
MSRC-5000SRD
Appendix C

Originally Published 7 May 1999

Support and Rationale Document

for the

Software Communications Architecture Specification

APPENDIX C. STEP 1 ARCHITECTURE DEFINITION REPORT (ADR)

15 September 2000

NOTE:

Information provided in this appendix was originally published at the conclusion of
JTRS, Step 1, on 17 June 1999. It has been included here in order to provide the reader
with a historical perspective of the rationale underlying the SCAS.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999

MSRC-5000SRD
Appendix C

Table of Contents

Section Title Page

Originally Published 7 May 1999 C-i

1 Introduction..C-A1-1
1.1 Scope...C-A1-1
1.2 Document Layout ...C-A1-3
1.3 Methodology...C-A1-3

1.3.1 Requirements Capture and Analysis..C-A1-3
1.3.2 Design Methodology ...C-A1-5

2 Baseline Architecture Description ...C-A2-1
2.1 The JTRS Architecture – Top-Level Look ...C-A2-1

2.1.1 Classes, Objects and Rules ..C-A2-1
2.1.2 How the Architecture Meets the Desired Attribute ...C-A2-5

2.2 Software Architecture View ...C-A2-8
2.2.1 Introduction ...C-A2-8
2.2.2 Software Architecture Rationale ...C-A2-10
2.2.3 Functional View ..C-A2-16
2.2.4 Structural View..C-A2-24
2.2.5 Logical View ...C-A2-28
2.2.6 Software Development Environment Recommendations..C-A2-57
2.2.7 MLS Migration Recommendations ...C-A2-58
2.2.8 Compliance Recommendations ...C-A2-59
2.2.9 Summary of Technical Advantages...C-A2-59
2.2.10 JCF IDL...C-A2-60

2.3 Deployment View...C-A2-62
2.3.1 Introduction ...C-A2-62
2.3.2 Hardware Architecture ..C-A2-62
2.3.3 Example Views..C-A2-67
2.3.4 AIRBORNE DEPLOYMENT Example View..C-A2-73
2.3.5 Vehicular Deployment Example View..C-A2-77
2.3.6 Dismounted Warfighter Deployment Example View..C-A2-80
2.3.7 Handheld Deployment Example View..C-A2-82
2.3.8 Deployment View Summary ...C-A2-85

2.4 Applications Views...C-A2-86
2.4.1 Introduction ...C-A2-86
2.4.2 SINCGARS SIP...C-A2-92
2.4.3 EPLRS Application View..C-A2-102
2.4.4 LINK-16 ..C-A2-119
2.4.5 Soldier Phone...C-A2-139

2.5 Networking View..C-A2-148
2.5.1 Introduction ...C-A2-148
2.5.2 JTRS Networking Architecture: Internal Node View ...C-A2-152
2.5.3 JTRS Networking Architecture: External System View ...C-A2-169

2.6 Security Architecture View ..C-A2-195
2.6.1 Introduction ...C-A2-195

2.7 IMPLEMENTATION EXAMPLE...C-A2-210
2.7.1 Introduction ...C-A2-210
2.7.2 FBCB2 Operational Example..C-A2-210
2.7.3 Ground Forces Domain, Vehicular Configuration ..C-A2-213

MSRC-5000SRD
Appendix C

Table of Contents

Section Title Page

Originally Published 7 May 1999 C-ii

2.7.4 Summary..C-A2-220
B.1 Cosite ..C-B-1

B.1.1 Cosite Issues ..C-B-1
C.1 System Control ...C-C-1

C.1.1 System Control Functional Definition...C-C-1
C.1.2 System Control Functional Attributes ...C-C-10
C.1.3 System Control Considerations and Rationale ..C-C-16
C.1.4 Implementation Example...C-C-60

D.1 Antenna...C-D-1
D.2 Power Amplifier ...C-D-1
D.3 Cosite ..C-D-2
D.4 RF ...C-D-2
D.5 Modem..C-D-3
D.6 INFOSEC..C-D-3
D.7 Inter-Networking ..C-D-4
D.8 System Control ...C-D-6
D.9 Human-Machine Interface ..C-D-8
D.10 Waveform ...C-D-9
D.11 Framework..C-D-10
D.12 System Fabric ...C-D-13
D.13 Input/Output..C-D-14
E.1 Antenna...C-E-1
E.2 Power Amplifier ...C-E-1
E.3 Cosite ..C-E-2
E.4 RF ...C-E-2
E.5 Modem..C-E-2
E.6 INFOSEC..C-E-3
E.7 Inter-Networking ..C-E-3
E.8 System Control ...C-E-4
E.9 Human-Machine Interface ..C-E-4
E.10 Waveform ...C-E-5
E.11 Framework..C-E-5
E.12 System Fabric ...C-E-6
E.13 Input/Output..C-E-6
F.1 Development Environment ... C-F-1

F.1.1 Introduction ... C-F-1

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-1

JTRS ARCHITECTURE DEFINITION REPORT

1 INTRODUCTION
This Architecture Definition Report summarizes the efforts performed on the Step 1 Architecture
Definition Study for the Joint Tactical Radio System (JTRS) Program. The purpose of the study was to
define a common open architecture for future tactical communications systems that will be capable of
providing the services required by the U.S. military, one that is open, extensible, scaleable, and a
framework for a broad family of affordable radios. This report describes the architecture and the
elements that comprise it. It shows how the requirements of the JTRS Operational Requirements
Document (ORD) and the Statement of Objectives will be met by implementation of the architecture.
Technology trends and dependencies are presented, identifying their impact on JTRS. All of these are
addressed in the context of the standards and necessary control to maintain the open system that meets the
operational, technical, and economic goals of JTRS.

1.1 SCOPE

This document provides a complete definition of the JTRS Architecture. It is really an Architecture
Framework in that it is precise in areas where reusability is effected and it is general in other areas so that
unique requirements of implementations can determine the specific application of the architecture. It
does not define all specific characteristics and parameters that fill in the framework but does show what is
required to complete the definition in the Step 2 effort. The architecture is illustrated with specific
examples of domains/platforms and selected waveforms. These examples assist in understanding the
implementation approaches, verify that the architecture presented “covers the requirements” of the JTRS
ORD, and show how potentially stressing requirements are accommodated.

An architecture must balance the conflicting goals of wide application to the system problem at hand and
sufficient definition that reusable elements can be implemented under its definition. With JTRS, defining
the hardware and software at a common level of detail did not allow the broadest reusability of
architecture components. For the hardware, the differences in the platform implementations were too
diverse to reach physical commonality across the domains. However, by using an “Object Oriented”
(borrowed from modern software development practices) definition for the hardware, represented as
hardware classes, all potential domain applications were able to be included within a single framework.
This framework also provides attributes (i.e., behavior and interfaces) that extend to all domains. This
illustrates very well the concept of “family of radios” that share common architectural elements.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-2

For software, the technology and the market are ready to define an architecture that will develop software
components with extensive reuse across domains. To do this requires discipline in the development
process and strict adherence to the definition of the architecture that is contained in this document. The
architecture for software makes extensive use of object modeling and is contained in the definition of the
JTRS Core Framework (JCF) and the JTRS Operating Environment (JOE). “Constraints” on the software
development, imposed by the architecture, are on the interfaces and the structure of the software and not
on the implementation of the functions that are performed. In this way, innovative designs can be put
forward with appropriate protection of the intellectual property of the developer and still reap the benefits
of wide reuse in other implementations of the architecture. This approach will permit either hardware or
software to be used in implementing a required function. The approach taken also permits legacy
solutions to be incorporated, where appropriate, by “encapsulation” techniques that provide a “one-sided”
standard interface into core architecture interfaces.

By including a set of rules with the architecture definition, additional guidance is provided to implement
the architecture in accordance with open system standards and other common approaches that JTRS
acquisition offices might want to impose. For example, the rules might narrow down the selection of
form factors and backplane interfaces to a set that would make reusability within and across domains
easier.

Figure 1.1-1 illustrates the concept of the JTRS architecture and its implementation down to specific
platforms. The hardware definition stays at a framework level with rules providing implementation
guidance down into domains and platforms. The software definition can be applied directly down to
implementation because of its general independence from hardware implementation. The set of rules
governing the software derives from the core framework and operating environment that make up the
architecture definition. There are special cases where size, weight, and power requirements limit the
direct application of software objects. However, even in these cases, reusability of designs, captured in
software and firmware modeling and simulation tools, reduces the cost of implementation and the
development time.

JTRS Architecture Framework

Domains

Implementation

H/W

Specific Objects
and Interface
Specifications

R
U
L
E
S

Classes and
Sub-classes

 JTRS Core
Framework

(JCF)

JTRS Operating
Environment

(JOE)

Object Models
& IDL

S/W

Specific Objects

Figure 1.1-1. The JTRS Architecture Framework and Its Relationship to Implementation

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-3

1.2 DOCUMENT LAYOUT

Section 1.3 describes the approach used to develop the architecture during this 3-month study and the
means by which the architecture will be displayed. Section 2 provides the architecture description and is
subdivided into seven subsections:

• Section 2.1 gives a top-level view of the architecture using the Hardware classes and elements
that make up the Software Architecture.

• Section 2.2 provides a full description of the Software Architecture.

• Section 2.3 presents the Hardware Architecture as seen through Deployment Views. Deployment
Views are examples of implementations of the Hardware Architecture on five representative
platforms: Maritime/Fixed, Airborne, Vehicular, Dismounted Warfighter, and Handheld.

• Section 2.4 illustrates how waveforms are overlaid on the Architecture through a series of
Application Views. SINCGARS, EPLRS, Soldier Phone, and Link-16 were selected as
examples.

• Section 2.5 shows the Architecture from a networking perspective in a Network View. It
describes how JTRS implements networking functions within the architecture and the role that a
JTRS plays in external modern networks.

• Section 2.6 provides a look at how security is accommodated within the architecture in a Security
View. The impact of security on the hardware and software elements of the architecture is also
described.

• In Section 2.7, a scenario depicting employment of Forward Battle Command, Battalion and
Below (FBCB2) is used to bring together the Software, Deployment, Application Networking,
and Security Views. This example shows how the architecture is used to meet a specific
operational scenario.

Section 3 describes additional work required to complete the JTRS Architecture Definition. This is work
that would take place in Step 2 along with validation. In Section 4, scalability of the architecture and its
evolution are discussed. Section 5 addresses Technology Issues and presents technology trends that will
impact implementation of the architecture. Section 6 takes on additional implementation issues and
provides discussions of Multi-Band, Multi-mode Operations, Wideband Operation, Networking
Implementation, Antennas, Power Amplifiers and Co-Site Considerations, INFOSEC Implementation
(discussing MLS and Key Management), Hardware and Software Growth, and Multiple Domain
Implementation. Section 7 summarizes the report.

In appendices, information is provided to supplement that contained in the main body and provide
additional detail on many of the topics in the body of the report. Appendix A provides a glossary of terms
used in this paper. B gives a ORD Requirements Traceability Matrix showing where each ORD
requirement is addressed in the document. Appendix C provides additional software material and
appendix D expands on the information provided in the Deployment Views. Appendix E provides
addition information for the waveform Application Views. Appendix F gives additional information on
the Networking View and Appendix G expands on the security information of the report by providing
four additional papers on security topics: Security Architecture, Multi-Level Security Roadmap,
Technology Shortfalls, and Key Management.

1.3 METHODOLOGY

1.3.1 Requirements Capture and Analysis

The first step taken was to formalize and consolidate the capture of JTRS requirements into a common
database. The tool selected for this is DOORS (Dynamic Object Oriented Requirements System), a

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-4

requirements-capture database package from QSS, Inc. Its strength is the ability to load specifications
(e.g., the ORD), identify requirements, assign various attributes to those requirements, link related or
subordinate requirements, and have great flexibility in working with them. Step 1 of the architecture
study concentrated on identifying requirements that impacted architecture decisions and directly related to
the ten evaluation criteria of the solicitation. Table 1.3-I shows the attributes assigned to the ORD
requirements.

Table 1.3-I. Attributes Assigned to Requirements

Attribute
Category Assigned Designations Purpose

Assigned IPT PM, SE, SW, Reqts, Sec, HW,
NW, Platform

Assign requirements to Step 1 IPTs for analysis
tasks.

Step-1,2,3
Applicability

Step-1, Step-2, Step-3 Sort requirements that are relevant to Architecture
definition from those that are not, and facilitate
correlation of database with Step 2 plans.

Architecture
Driver

High, Medium, Low Evaluate each requirement with respect to the
degree that it drives/influences the JTRS

Architecture
Priority High, Medium, Low Estimate priority of implementation
Difficulty High, Medium, Low Estimate difficulty of implementation.
Cost High, Medium, Low Estimate cost of implementation.
Applicability to
10 Evaluation
Criteria

High, Medium, Low, None Determine which are the driving requirements from
the standpoint of the JTRS Step 1 Evaluation
Criteria.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-5

The DOORS tool has been used to generate reports for the IPTs to aid in the architecture definition. One
report is the list of architecture drivers: ORD requirements that influence speed, rate, bus structure,
interfaces, complexity, etc., of a JTRS radio to an extent that architecture decisions are necessary to
accommodate them. Implementation priority was used to screen these drivers, so that, for instance, a
requirement that may be an objective in future years would not adversely impact a solution supporting the
key performance parameters (KPPs) identified in the ORD.

Waveforms to be supported by JTRS have an influence on lower level architecture decisions, especially
with the need to support many legacy waveforms and be able to accept new ones that may be significantly
more complex and capable. Characteristics of each of the listed waveforms were tabulated, focusing on
parameters and implementation aspects that may challenge the system design. Representative waveforms
were selected to verify architecture capability; these are presented in 2.4.

The DOORS database will continue to be used through Steps 2 and 3 of the JTRS program. With the
ability to assign relationships and dependencies and to trace requirements up and down (from original
requirement to object where it is implemented), it is a powerful tool to ensure all requirements have been
met when the final product is built.

1.3.2 Design Methodology
Key JTRS requirements include modularity, software reprogrammability, scalability, and COTS-based.
For these fundamental aspects, the architecture and system design lend themselves to an object-oriented
system design approach as is currently used in modern software systems design. Industry is moving to
this approach; a method was selected that is based on the Institute of Electrical and Electronic Engineers'
Recommended Practice for Architectural Descriptions (draft), IEEE P1471.

The approach followed these steps:

1. Identify the stakeholders – those who use, develop, or generally have an interest in how the
system performs.

2. Identify the key concerns of these stakeholders – their requirements.

3. Determine the viewpoints that will provide an adequate set of views of the system, such that
all architectural requirements can be identified. Viewpoints are the templates to be
followed.

4. Define these viewpoints, with as common a definition as possible so that the views
developed from them can be easily correlated.

5. Develop views of the architecture, using the concerns and requirements previously
determined and use cases as necessary to complete the view and verify its completeness.
Use cases are ways the system is used by operators, maintainers, other systems, etc. The
views are presented in section 2.

6. Correlate the views to ensure consistency and establish the (initial) hardware/software
partitioning. The architecture definition process is iterative, and will continue beyond this
Step.

7. Generate a "system view" of the architecture, which can be easily depicted and understood
by the audience – which is presented in 2.1.

8. Establish the rules that apply to implementation of the architecture into a product. These
are also presented in 2.1.

9. Document the rationale for each step. Rationale is presented with the views as they are
discussed in section 2.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-6

Figure 1.3-1 shows the flow of these steps. The identified stakeholders are appropriate to the architecture
definition phase; as the architecture is completed and system development proceeds, emphasis will shift
to other stakeholders currently within these general groups. The concerns applicable to JTRS have been
provided in the ORD and in the set of criteria set forth by the JPO in the solicitation for this Study. Other
sources include the Mission Needs Statement (MNS), the Study Statement of Objectives (SOO), and the
PMCS Guidance Document.

The viewpoints that describe the JTRS Architecture and capture all requirements are:

1. Software – this is software programmable radio/system and this essential view will be the
primary description of the architecture. The correct software architecture will provide the
program goals of software reusability, software/hardware independence, open systems for
affordability and upgradeability.

2. Deployment – will address the hardware and platform aspects for the various domains, etc.
The hardware architecture must remove obstacles to implementing new technology, allow
taking advantage of Commercial off-the Shelf (COTS) technology and, hopefully,
components, and minimize platform integration costs throughout the life cycle of JTRS.

3. Applications – ensuring that legacy and growth waveform requirements are supported by
the resulting architecture.

4. Networking – interoperability with legacy and future communication services is a major
operational benefit of this system.

5. Security – will overlay the total system security requirements on the architecture; MLS will
have a major impact on the architecture as well as the implementation of the system.

The definition of a viewpoint includes the identification of the stakeholders and concerns addressed by
the viewpoint; the vocabulary, language modeling techniques, etc., used to describe the resulting views;
and the source of information used. As the views are presented in this report, the definitions used will be
apparent.

O
riginally Published 7 M

ay 1999
C

-A
1-7

M
SR

C
-5000SR

D
A

ppendix C

Software
viewpoint

rationale

interface
definition

Software
view(s)

Security
viewpoint

rationale

interface
definition

Security
view(s)

Networking
viewpoint

rationale

interface
definition

Networking
view(s)

Applications
viewpoint

rationale

interface
definition

Applications
views

Deployment
viewpoint

rationale

interface
definition

Deployment
views

DOORS

attributes
priorities

.

.

ORD
MNS
SOO

Evaluation
Criteria

JTRS
JPO

Procuring
Services

Users

NSA

Stakeholders Concerns

cost,
sufficiency
of arch. std.

Contractors

further
developed
in Part 2
of study

JTRS
ARCHITECTURE

DESCRIPTION

PMCS
Model

use
cases

use
cases

use
cases

use
cases

use
cases

Figure 1.3-1. Architecture Definition

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-8

Use case modeling is a technique, used in object oriented design, to show the intended functions (use
cases) of the system, what the system interacts with (called actors – anyone or anything external that
interacts with the system), and the relationships between the use cases and actors. Figure 1.3-2 shows the
top level use cases for JTRS. At the highest level, all actions expected of the JTRS fall into one of those
cases.

Use cases are broken down into Scenarios – particular instances of the use case. (For example, the use
case "Configure Radio Channels" has scenarios "Configure application waveform settings" and "Activate
Channel," among others. Scenarios are used to identify the classes and interfaces of objects (hardware
and software) that will perform the functions. They are also used to verify that the design (or architecture
in our case) will fulfill the requirements imposed by the various system functions. Figure 1.3-3 shows the
scenarios identified for the nine JTRS use cases and their priority relative to architecture definition.
While a cursory reading of the scenarios may not give an impression of their utility, their systematic use
is a means to flesh-out all functions and interfaces needed to perform the selected action. An example is
the "Waveform Reception" scenario (8.1): by working through this scenario for all waveforms that the
JTRS will receive, and identifying (with textual use case descriptions) all functions that are performed on
the received signal, each functional object – hardware and software – will be identified.

The next stage in the architecture definition process is generation of the Views that make up the classes of
objects that will be used to actually implement the design. Classes can be viewed as templates for a group
of objects that share common attributes (fulfilling common requirements), have common interfaces, and
perform common operations; objects are the actual hardware or software elements in a particular system
that perform the operations. There can be subclasses to differentiate functionality below the common
functions; for instance, RF can be a class in a radio, with receiver and transmitter subclasses.

A class is defined by its attributes. Classes are only useful if the subclasses and objects below them
"inherit" attributes and interfaces from their parent class. Requirements that apply across the class are
assigned as attributes at the class level. All subclasses and objects within that class then "inherit" those
attributes and have additional attributes assigned which make them unique (the RF class has an attribute
“Transmit Power Output,” a particular object in that class may be a WNR receiver / exciter with the
attribute “+14 dBm Transmit Output Power”). A subclass’s or object’s attribute may also override an
attribute of its parent class; thus an exception for one particular version of an object does not require
generating a whole new class or changing the attributes of all other members of a class. Similarly,
common interfaces are assigned to the top level class, with variations or specific identification showing
up at lower levels (RF has an RF Output interface, a particular object in that class may be a DMR 0.1 –
2000 MHz receiver / exciter with an MCX connector as its RF output interface).

C
-A

1-9

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999

Figure 1.3-2. JTRS Use Cases

Radio
System

Baseband
System

8.
Send and Receive

Comms Traffic

7.
Configure

Radio

4.
Manage Software

Configuration

1.
Bootup and

Initalize

5.
Radio

Diagnostics

3.
Manage Physical

Configuration
2.

Manage
User Access

9.
Develop
SW/HW

Administrator

Comms User

Maintainer

Developer

JTRS

<<enables>>
<<uses>>

6.
Manage Key Fill

Security

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<develops>>

C
-A

1-10

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999

Use
Case
ID

Use Case
Name

Use Case Description Scenario
ID

Scenario Description Priority - High
 - Moderate
 - Low

1.1 Turn radio “on”/apply primary power Moderate
1.2 Send “System RESET” command Low

1 Boot Up & Initialize This use case deals with the initialization of JTRS upon
power-on or system reset.

1.3 Turn radio “off”/remove primary power Low

2.1 Establish, modify, delete, add User login accounts Low
2.2 Change User password Low
2.3 Modify access privileges Low

2 Manage User Access This use case defines the required interactions between the
actors and JTRS when User access to JTRS is required by the
customer to be invoked.

2.4 View Security Log Low

3.1 Insert hardware module(s) High
3.2 Remove hardware module(s) Low

3 Manage Physical
Configuration

This use case defines the required interactions between the
actors and JTRS when changes to hardware configurations are
made. 3.3 Enter, edit, view Physical Resources Data High

4.1 Initiate Software Download to Local Radio High
4.2 Initiate Software Download from Local radio to

target Radio
Moderate

4.3 Receive Software Download from RF Moderate

4 Manage Software
Configuration

This use case defines the required interactions between the
actors and JTRS related to software loading and configuration
management.

4.4 Add, delete, replace software in Software Library High

5.1 Enable Background BIT Low
5.2 Initiate Radio-level BIT (possibly destructive) Moderate
5.3 Initiate Channel-level BIT (specific channel only) Low

5 Radio Diagnostics This use case defines the required interactions between the
actors and JTRS related to radio diagnostics.

5.4 View Fault Log Low

6.1 Initiate Radio CI fill Moderate
6.2 Initiate GPS fill Low
6.3 Initiate Network Data fill Moderate
6.4 Select application for fill Moderate
6.5 Receive OTAR Low
6.6 Initiate OTAR Low
6.7 Receive OTAZ Low
6.8 Initiate OTAZ Low
6.9 Receive OTAT Low

6.10 Initiate OTAT Low
6.11 Initiate Zeroize - All Moderate
6.12 Initiate Zeroize – Selective Moderate

6 Manage Fill This use case defines the required interactions between the
actors and JTRS related to loading radio fill, associating the
fill data with waveforms/channels, and deleting fill data.

6.13 Detect tampering Low

Figure 1.3-3. JTRS Use Cases and Scenarios

C
-A

1-11

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999

Use
Case
ID

Use Case
Name

Use Case Description Scenario
ID

Scenario Description Priority - High
 - Moderate
 - Low

7.1 Define application waveform on a channel(s)
- SINCGARS
- HAVEQUICK
-

High

7.2 Configure application waveform settings on a
channel(s)

- frequency
- modulation
- crypto
- output power
- listening silence
- frequency scanning
- network parameters

High

7.3 Select Protocol/Message Conversion Low
7.4 Select Retransmit/Bridging/Routing Moderate
7.5 Configure JTRS Internetworking Moderate
7.6 Manage JTRS Internetworking (by manager and

autonomous network protocols)
Moderate

7.7 Activate channel(s) Moderate
7.8 Deactivate channel(s) Moderate
7.9 Control System Remotely Moderate

7 Configure Radio
Channels

This use case defines the required interactions between the
actors and JTRS related to configuring the multiple radio
channels for operation. This use case deals with resource
assignment and management and includes selection of valid
and invalid configurations. This use case also includes issues
such as maintaining virtual channel definition(s) and routing
(e.g., RF to base band port relationships) during operation.

7.10 Configure GPS Receiver Low

8.1 Waveform Reception (RF input to Baseband output) High
8.2 Waveform Transmission (Baseband input to RF

output)
High

8.3 Receive GPS Signal Low
8.4 Detect GPS Signal unavailable Low

8 Send and Receive
Communications
Traffic

This use case defines the required interactions between the
actors and JTRS related to the operation of one or more radio
channels.

9.1 Develop Waveform Application SW High
9.2 Develop Infrastructure SW Moderate

9 Develop SW/HW This use case defines the required interactions between the
developer actor and the JTRS related to development of
application or infrastructure SW and new/enhanced HW

9.3 Develop new/enhanced HW modules High

Figure 1.3-3. JTRS Use Cases and Scenarios - Continued

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A1-12

Objects are the actual realization of a class element. A deliverable product (i.e., a radio) is the
incorporation of all of the objects of the system; an architecture, in general, does not consist of objects. In
some instances it may make sense to include objects in the architecture, such as in the software
architecture, if the object is germane to the definition.

The main strength of this architecture is the Rule Set that guides implementers as they apply their specific
procurement specifications to the JTRS Architecture. The use of commercial standards, open and
complete interface specifications, use of POSIX-compliant operating systems are examples of the rules
that are integral to the architecture definition. These rules are identified in the sections that follow. As
the architecture matures, additional rules are likely to be included; as technology changes, it is possible
that rules may change or be deleted.

The JTRS Architecture Definition is presented in Section 2.1. The definition is comprised of the Views
of the classes and objects and the Rule Set, which together make a framework for implementing fully
compliant JTR Systems.

As with all good design practices, the method being followed is iterative and can be applied to all levels,
from system architecture to detailed element design. Step 1 focused effort on the architecture level and
use implementations as example use cases to verify completeness of the architecture. Step 2 efforts will
use modeling and implementations to complete the definition as well as to validate its sufficiency with
respect to the ORD and evaluation criteria.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-1

2 BASELINE ARCHITECTURE DESCRIPTION

2.1 THE JTRS ARCHITECTURE – TOP-LEVEL LOOK
Previous sections introduced the object-oriented architecture description approach used to describe and
define the JTRS architecture. Also introduced was the definition of an architecture as the structure of
components of a system, their interrelationships and the principles and guidelines governing their design
and evolution. This section presents a top-level look at the architecture in terms of the Hardware
framework, the Software JTRS Core Framework (JCF), and the Software JTRS Operating Environment
(JOE). These three items will show the components and their interrelationship. Together with the JTRS
Rule Set (part of the architecture definition), the guidelines for design and implementation are also
provided.

2.1.1 Classes, Objects and Rules

2.1.1.1 The JTRS Hardware Architecture
Partitioning the JTRS hardware framework into hardware classes and objects places emphasis on the
physical (i.e., “touchable”) elements of the system as opposed to the functional elements. This defines
common elements sharing physical attributes (characteristics and interfaces) that carry over to
implementation for specific domain platforms. The same framework applies to all domains and, with
appropriate application of the Rule Set (the guidelines for implementation), can lead to common hardware
modules for different platforms. Some examples of this, as well as the applicability of the same
framework to all domains, will be shown in Section 2.3, the Deployment View of the Architecture.
Hardware commonality encourages reuse across domains decreasing recurring production costs as well as
non-recurring development costs. The hardware framework is shown in figure 2.1-1. Section 2.3.2
provides further description of what functions are performed within the classes.

In the figure, Hardware Module Classes below the super class “JTRS Module” inherit the attributes of the
super class. The super class inherits the system level attributes (read requirements) from the JTRS
Hardware block. On the diagram, these classes represent abstract entities with general attributes as
shown. The hardware objects themselves, that are the physical implementation of these classes, will have
the specific attributes filled based on a platform’s physical requirements and the selection of specific
items from the Rule Set. In this sense, the attributes are the parameters that define domain-neutral
hardware objects, and the values of the attributes specify requirements for a selected implementation. In
this way, the Hardware framework is the same for all implementations.

The three tiers of classes were selected because the JTRS Architecture block presents the higher order
attributes that relate to performance issues driving the lower layer classes and ultimately the
implementation in the hardware objects. The Chassis Super-Class has unique physical, interface,
platform power and external environment attributes that are not shared with the modules in the chassis.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-2

RF
Class

Attributes
• # Rx /Tx Channels
• Performance

Parameters

Attributes
• # channels
• uP/FPGA Capability
• Memory

 Memory Size & Type

Modem
Class

Processor
Class

Attributes
• uP Capability
• Memory & Type

GPS
Class

Attributes
• # Channels
• Mil or Com

INFOSEC
Class

Attributes
• # & Type of Channels
• Engine
• Key Management

I/O
Class

 Attributes
• Buses
• Discretes

Power Supply
Class

CSI
Class

Frequency
Standard Class

Attributes
• Capacity
• Voltage/Current
• Output Performance

Attributes
• Accuracy
• Stability
• # Fanouts

Attributes
• Backplane/Bus
• Number of Slots

2.1-1

JTRS Hardware

Attributes
• Power
• Form Factor
• Environmental Interfaces
• Platform Interfaces

Attributes
• Form Factor
• Chassis Interface Type
• Chassis Environmental
 Requirements

Chassis
Super Class

HW Module(s)
Super Class

Attributes
 • Maintainability
 • Availability

Figure 2.1-1. The JTRS Hardware Framework

2.1.1.2 The JTRS Software Architecture
The JTRS Software Architecture is composed of the JTRS Operating Environment (JOE), which includes
the JTRS Core Framework (JCF). When completely defined in Step 2, these two elements provide a
complete and sufficient definition so that software application suppliers (new waveforms, legacy
waveforms, or networking) will be able to write S/W that will run on all JTRS compliant systems. The
Rule Set for the Software comes from the JOE and includes the design rules embedded in the attributes
(behavior and interfaces) and in the structure defined by the JCF and JOE.

JTRS Core Framework (JCF) – The JCF is the essential set of open application layer interfaces and
services that have been defined to provide an abstraction of the underlying software and hardware layers
for application designers. A complete published definition of all services and interfaces in this JCF is
required for the JTRS program to achieve the objectives of third party software suppliers and open
architecture. The JCF consists of:

• Base CORBA interfaces (Message, MessageRegistration, StateManagement, and
Resource) that are inherited by core and non-core software applications

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-3

• Core applications (DomainManager and ResourceManager) that provide framework
control of resources

• Core services that support both core and non-core applications (Logger, Installer, Timer,
FileManager, FileSystem, and File)

• A core Factory (optional) interface for controlling the life span of core and non-core
applications.

Elements of the JCF are colored with aqua shading in the various diagrams throughout this document and
are also denoted with Italics in the text. Figure 2.1-2 is a diagram showing the JCF. Also included is an
optional Core Interface called Factory, based on commercial technology, that can be used by both core
and non-core applications.

Installer

JCF Services
Logger

Timer

DomainManager

FileManager

ResourceManager

Factory

registers with
1..*

oversees
1

accesses SW
files via

1
knows what SW
is available via

1..*

Creates static core &
dynamic non-core 1..*

1

instantiates
1..*

1

requests
resources of

1..*

provides

StateManagementMessageRegistrationMessage

are types

Guides start-up &
tear-down states of

Sets up virtual path
destinations via 1..*

File stores & retrieves
0..*

bases allowable
configuration on

1..*

are types
of

Executable
SW

Domain
Profile

1

1
1

application

1..*

controls1
acts on
C2 for

Resource

FileSystem
0..*

1..*

JTRS Core Framework (JCF)

Commercial Off-the-Shelf (COTS)

JTRS and/or Legacy Applications

resources

1 1 1
1

1

1..*

1..*

controls
1..*

Non-Core Applications

•Repeater
•Bridge
•Waveform
•Infosec
•Router
•Utility
•Access

JTRS Core
Services

JTRS Core
Applications

JTRS Base
CORBA Interfaces

Figure 2.1-2. The JTRS Core Framework (JCF)

Next to the block labeled “Non-Core Applications” are the types of applications that will be hosted on
this framework. These applications inherit attributes from the class called Resource (dotted line around
three blocks labeled Message, MessageRegistration, and StateManagement) and make use of all the
services provided by the remaining elements of the JCF. For example, the non-core application Access
provides the interface into hardware devices that are instantiated in a specific implementation. This
interface provides the connection, for example, to a H/W Modem or an INFOSEC Module. Section
2.2.5.1 discusses the JCF in more detail.

JTRS Operating Environment (JOE) – The JOE is the combined set of JCF services and COTS
infrastructure software (e.g., bus support packages, operating system and services, and Common Object
Request Broker Association (CORBA) Middleware services) integrated together in a JTRS
implementation. The JOE also defines a complete development environment for third party software
suppliers and reduces the non-recurring engineering cost associated with developing new capability
waveforms on JTRS. Figure 2.1-3 illustrates the JOE and its relationship to the JCF. CORBA provides a
well-defined structure and logical definition between the JTRS software objects.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-4

JTRS Core Framework (JCF)

Commercial Off-the-Shelf (COTS)

JTRS and/or Legacy Applications

JTRS Core Framework IDL (“Logical Software Bus”)

JTRS
Modem

Applications

JTRS
NetProtocol, Internetwork

Applications

JTRS
Connect, Interconnect

Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
Host

Applications

JTRS
Modem

Applications

JTRS
NetProtocol, Internetwork

Applications

JTRS
Connect, Interconnect

Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
Host

Applications

JTRS
Modem

Applications

JTRS
NetProtocol, Internetwork

Applications

JTRS
Connect, Interconnect

Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host
Agent

JTRS
HCI

Applications

Black Hardware Bus Red Hardware Bus

Non-CORBA
Modem

Applications

Non-CORBA
Modem

Applications

Non-CORBA
Modem

Applications

Modem Translate API

Non-CORBA
Infosec

Applications

Non-CORBA
Infosec

Applications

Non-CORBA
Infosec

Applications

Infosec
Translate API

Non-CORBA
HCI

Applications

Non-CORBA
HCI

Applications

Non-CORBA
HCI

Applications

Host Translate APIRF

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

Modem NAPI Link, Network NAPI Link, Network NAPI

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

Figure 2.1-3. The JTRS Operating Environment

This diagram introduces the concept of “agents” which are ways to incorporate legacy and non-CORBA
compliant elements into the radio.

2.1.1.3 The JTRS Rule Set
The JTRS Rule Set provides general guidance for the design and implementation of the Hardware and
Software Framework. An initial set of rules relating to Form Factor, Interfaces, Environmental
Requirements, and Software Operating System has been defined. The rules constrain the implementation
to open standards and commercial elements. The Government may choose to provide stricter guidelines
applicable across multiple domains that promote greater reuse at the hardware object (physical module)
level. The initial Rule Set includes:

Form Factor – The form factor for modules in a JTRS instantiation shall be:

• selected from open, commercial standards (wide usage, available from multiple vendors,
and expected to have long-term support)

• chosen to maximize reuse across domains

• chosen to optimize the serviceability of the internal chassis installation

• chosen for compatibility with the chassis/platform environment, e.g., efficiently utilize
the volume defined by the chassis and/or platform

• compatible with the available environment control facilities provided by the platform.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-5

Interface – The interfaces for modules in a JTRS instantiation shall be:

• selected from open, commercial standards (wide usage, available from multiple vendors,
and expected to have long-term support)

• chosen to maximize reuse across domains

• supported by a POSIX-compliant operating systems.
Environment – The environmental performance of modules in a JTRS instantiation shall be:

• compatible with the needs of the platform

• optimized for reuse across domains

• defined to maximize the use of commercial products.
Software –Guidelines for a software developer for writing JTRS application software include:

• Comply with the JCF interface definitions and structure

• Use POSIX OS

• Use CORBA 2.2 Middleware

• Develop in a higher order language for ease in processor portability
2.1.2 How the Architecture Meets the Desired Attribute

The architecture defined above at its top-level hardware and software is extremely robust for JTRS.
There is sufficient detail to be enforceable and flexibility to evolve as technology and new requirements
emerge. The following paragraphs briefly describe how the architecture satisfies the ten criteria listed in
the JTRS Step 1 Solicitation. Sections 2.2 – 2.7 illustrate these criteria further with examples using
views.

2.1.2.1 Interoperable Family of Radios
An architecture has been defined that covers all implementations. Common class objects implement the
same legacy waveforms and new networking protocols that provide interoperability across domain
platforms.

2.1.2.2 Programmable

The objects that will implement JTRS include General Purpose Processors, Digital Signal Processors, and
Field Programmable Gate Arrays. The software structure has many reusable components to encourage
programmability. Provisions have been made in the JTRS Use Cases for downloads of new software to
ensure that changes can be made in the field.

2.1.2.3 S/W Independence from H/W

The JTRS Operating Environment uses POSIX to standardize the operating system interface for software
applications. A hardware abstraction layers (drivers) has been included to isolate the operating system
from specific bus or serial interfaces. The use of CORBA provides for distributed processing,
standardizes application level interfaces, and isolates applications from the hardware.

2.1.2.4 Encourages Industry Acceptance

The entire architecture definition is built on open system standards and commercial technology. The
standards and commercial elements are supported by commercially available development tools. The
level of detail provided by the JCF and JOE will permit any competent software supplier to develop

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-6

software for the JTRS. That increases the potential licensing base and provides further incentive for
industry development of applications.

2.1.2.5 Extendible

Analysis of waveforms that could represent stressing requirements in the future has provided confidence
that all ORD waveforms can fit within the architecture. Faster processors and higher speed busses that
would enable even faster data rates also do not break the architecture. They are implemented within its
framework and if the new technology adheres to the architecture rules applied to a specific
implementation, new hardware can be plugged into existing chassis. The architecture encourages
increased use of commercial technology, smart partitioning into the functional modules, and standardized
implementation of JTRS infrastructure elements like backplanes and busses that greatly reduce the cost of
upgrade.

2.1.2.6 Scalable
Designing with functional modules, as defined within the class structure, is inherently scalable. For
example, a set of common modules could populate two different chassis with different numbers of slots
tailored to the channel simultaneity requirements of a platform. Chassis can be “stacked” to provide
additional channels. How many chassis is transparent to host control, only the number of channels and
their resources need be visible. Scalability can take the form of changing an implementation from a field
programmable gate array (FPGA) to an application specific integrated circuit (ASIC). Software
scalability in space, weight and power constrained environments can take the form of reduced capability
operating systems or reduced functionality of an application. Object oriented design facilitates
implementing these options.

2.1.2.7 Able to Insert New Technology
By partitioning of the hardware into the classes that have been defined, technology insertion can be done
without disrupting interfaces. Likely improvements in processors and components can be done within
objects and be made transparent to the rest of the radio components. Using object-oriented definitions for
the hardware and software provides “hiding of the methods” within the classes and objects. This hiding
in essence stipulates that, from an “outsiders” perspective, the means by which an object executes its
function is hidden from other objects. New technology or new algorithms implemented within an object
do not impact other components.

2.1.2.8 Affordability

A large reuse of software is anticipated if it is developed in accordance with the framework. The cost of
porting to different platforms will be drastically reduced by using the JTRS software that has isolated the
application from the hardware. Furthermore, there is an opportunity for greater common hardware across
domains by making use of the Rule Set that is part of the architecture. Acquisition agencies that agree on
common sets of standards derived from the Rule Set (e.g., form factor, bus type, backplane type) for
different platforms will benefit from shared development costs and lower production costs, due to larger
lot sizes. Platform integration costs will also be reduced. The architecture isolates platform interfaces
into three classes. JTRS adjusts its interface to the platform rather than requiring platforms to make
changes.

2.1.2.9 Incorporates INFOSEC

The architecture addresses all ORD INFOSEC requirements. Included within the hardware class structure
is provision for programmable crypto, as well as more conventional embedded solutions readily available
today. Multi-Level Security (MLS) has been considered and a plan developed to evolve from the system-
high implementations of today to MLS in the future. The software architecture includes in its framework
provisions the security services listed in the ORD.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-7

2.1.2.10 Addresses ORD Requirements

Through analysis of the JTRS ORD, using the powerful requirements tracking tool DOORS, all ORD
requirements have been examined and none were found that “break the architecture”. By keeping the
hardware definition at the class level and providing rules to guide design, very diverse sets of
implementations can be achieved. Included in Appendix B is a requirements traceability matrix taken
from DOORS that shows where each requirement has been addressed.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-8

2.2 SOFTWARE ARCHITECTURE VIEW

2.2.1 Introduction
The JTRS Software Architecture has been defined using Object Oriented (OO) analysis and design
methods to specify an open, modular, reusable Software Architecture that is portable between JTRS
domains and is independent to the maximum extent practical of the implementation dependent hardware
architecture.

This Section provides the rationale used in selecting the Software Architecture defined herein.
Subsequent sections provide further definition of the architecture as seen through four “views”:

1. Functional View – Section 2.2.3, which is derived from the Programmable Modular
Communication System (PMCS) software reference model and broadly categorizes the
functional roles that may be performed by and/or controlled by JTRS software entities and
the interface relationships among these software entities. This view also illustrates the
JTRS Core Framework (JCF) and its role in providing class objects from which user
application objects inherit common types of behavior and interfaces.

2. Structural View – Section 2.2.4, which illustrates the multi-layered structure of the JTRS
Operating Environment (JOE), including bus support, COTS software, industry standard
protocol stacks, JTRS Core Framework (JCF) services, and JTRS waveform and
networking applications.

3. Logical View – Section 2.2.5, which includes more detailed descriptions of the JCF as well
as the relationships between the various JCF objects and interfaces. Extensive use of
Unified Modeling Language (UML) diagrams and Interface Definition Language (IDL) of
the Common Object Request Broker Architecture (CORBA) support the textual
descriptions of the JCF.1

4. Use Case View – Appendix C.2, which contains scenarios that depict examples of how the
elements of the Software Architecture, including COTS software, JCF services, and JTRS
applications collaborate or interact with one another to satisfy the user requirements
allocated to software from the JTRS ORD.

In addition to these four views of the Software Architecture, other software related architecture issues are
addressed. These include:

1. Software Development Environment – Section 2.2.6

2. MLS Migration Recommendations – Section 2.2.7

1 CORBA, IDL, and UML are open industry standards defined by the Object Management Group
(OMG), a consortium of over 800 worldwide members. The OMG’s charter includes the
establishment of industry guidelines and detailed object management specifications to provide a
common framework for application development. Conformance to these specifications will
make it possible to develop a heterogeneous computing environment across all major hardware
platforms and operating systems. These standards are publicly available on the internet at
http://www.omg.org.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-9

3. Compliance Recommendations – Section 2.2.8

4. Summary of Technical Advantages – Section 2.2.9

5. POSIX Recommendations – Appendix C.3

6. CORBA Technology – Appendix C.4

Section 2.4 provides Application Views to illustrate how Waveform Applications are overlaid on this
Software Architecture. Section 2.5 is devoted to the Networking Application of JTRS and illustrates how
the JTRS Core Software Framework implements the diverse networking requirements of the ORD.

2.2.1.1 Definitions

Several key terms used in the Software Architecture View section are defined below.

JTRS Core Framework (JCF) – The JCF is the essential set of open application layer interfaces and
services that have been defined to provide an abstraction of the underlying software and hardware layers
for application designers. Elements of the JCF are colored with aqua shading in the various diagrams
throughout the software section and are denoted with Italics in the text.

A complete published definition of all services and interfaces in this JCF is required for the JTRS
program to achieve the objectives of third party S/W suppliers and open architecture. The JCF consists
of:

• Base CORBA interfaces (Message, MessageRegistration, StateManagement, and
Resource) that are inherited by core and non-core software applications

• Core applications (DomainManager and ResourceManager) that provide framework
control of resources

• Core services that support both core and non-core applications (Logger, Installer, Timer,
FileManager, FileSystem, and File)

• A core Factory interface for controlling the life span of core and non-core applications.
JTRS Operating Environment (JOE) – The JOE is the combined set of JCF services and COTS
infrastructure software (e.g., bus support packages, operating system and services, and CORBA object
services) that are integrated together in a JTRS implementation. The JOE also defines a complete
development environment for third party S/W suppliers and reduces the NRE associated with developing
new capability waveforms on JTRS.

2.2.1.2 References
1. DoD Joint Technical Architecture Version 3.0 Draft 1 2.2-18, 26 February 1999

2. “Recommendations for Using DCE, DCOM and CORBA Middleware”, MITRE
Corporation. April 13,1998, DII COE Distributed Applications Series by the Defense
Information System Agency (DISA) Joint Interoperability & Engineering Organization
(JIEO) Center for Computer Systems Engineering (JEXF)

3. The Common Object Request Broker Architecture and Specification, Version 2.2, OMG, 1
February 1998

4. Naming Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

5. Event Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-10

6. Transaction Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

7. Time Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

8. Trading Object Services Specification contained in CORBAservices: Common Object
Services Specification, 05 July 1998

9. MinimumCORBA, Joint Revised Submission, OMG, August 17, 1998

10. CORBAtelecoms: Telecommunications Domain Specifications, Version 1.0, June 1998

11. “Optimizing a CORBA Inter-ORB Protocol (IIOP) Engine for a Minimal Footprint
Embedded Multimedia Systems”, Washington University Web Site.

12. Aniruddha Gokhale, Gokhale@research.bell-labs.com, Bell Laboratories, Lucent
Technologies

13. Douglas C. Schmidt, Schmidt@cs.wustl.edu, Dept. of Computer Science, Washington
University, One Brookings Drive, St. Louis, MO 63130

14. http://www.objenv.com/cetus/oo_object_request_brokers.html#oo_corba_orbs_comparison
s. This internet site provides online CORBA ORB comparisons.

15. http://www.objenv.com/cetus/software.html. This internet site provides online object-
oriented information such as languages, distributed communicating, modeling, etc

16. http://www.objenv.com/cetus/oo_corba.html, This internet site provides online CORBA
information

17. A Large Distributed Control System Using Ada in Fusion Research, John P. Woodruff and
Paul J. Arsdall, Lawrence Livermore National Laboratory.

2.2.2 Software Architecture Rationale

The JTRS ORD, the JTA (reference 1), and the MITRE report (reference 2) define requirements for the
JTRS and recommend technologies applicable to the JTRS. The JTRS architecture describes the
components that meet the JTRS requirements using the recommended technologies. This section
summarizes the rationale behind the selection of the critical Software Architecture components. The
critical software components of the architecture can be grouped into three categories:

1. Middleware

2. Processor Environment

3. JTRS Core Framework (JCF).

The critical components selected support the following criteria called out in the JTRS ORD and the JTA:

1. Wide Industry Acceptance

2. COTS

3. Distributed-Object Computing Architecture

4. Reuse and Portability

5. Scalability

6. Support for Different Domains

7. Performance

mailto:Gokhale@research.bell-labs.com
mailto:Schmidt@cs.wustl.edu
http://www.objenv.com/cetus/oo_object_request_brokers.html#oo_corba_orbs_comparisons
http://www.objenv.com/cetus/oo_object_request_brokers.html#oo_corba_orbs_comparisons
http://www.objenv.com/cetus/oo_object_request_brokers.html#oo_corba_orbs_comparisons
http://www.objenv.com/cetus/oo_object_request_brokers.html#oo_corba_orbs_comparisons
http://www.objenv.com/cetus/software.html
http://www.objenv.com/cetus/software.html
http://www.objenv.com/cetus/software.html
http://www.objenv.com/cetus/oo_corba.html
http://www.objenv.com/cetus/oo_corba.html
http://www.objenv.com/cetus/oo_corba.html

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-11

8. Security and Safety.

2.2.2.1 Middleware Selection Rationale
Support for a distributed architecture is a requirement of the JTRS. Middleware is the software used to
transfer messages across a distributed architecture. CORBA was selected as the middleware component
based on the following rationale:

1. The JTA Version 3 draft mandates the use of CORBA for distributed-object computing.
The CORBA interoperability mandate does not preclude the use of other distributed-object
technologies, such as ActiveX/DCOM or Java, as long as the capability for interworking
with CORBA applications and objects is maintained by the non-CORBA system.

2. The MITRE DII COE report specifically recommends the “gang of three” approach
wherever possible: CORBA/Internet/Java. The report recommends the use of Distributed
Computing Environment (DCE) only for legacy software. CORBA has received much
more industry support than DCE due to its object orientation versus the functional
orientation of DCE.

3. CORBA is an open standard from the Object Management Group (OMG). Over 800
companies are members of the OMG. CORBA is a widely accepted industry standard and
there are many different COTS CORBA vendors. CORBA abstracts the bus hardware
under an Object Request Broker (ORB) software bus. Abstraction of the bus hardware
allows the applications to be ported over different buses. The CORBA specification calls
out minimumCORBA and the Portable Object Adapter (POA). The minimumCORBA
specification calls out the smallest subset of CORBA functionality and the ORB interface.
This ability to subset the CORBA functionality supports scalability. The POA standardizes
the interface to the ORB on the server side. Applications that are written to sit on a POA
and/or minimumCORBA ORB can be more easily ported to a different vendor’s ORB.

4. CORBA is language neutral. CORBA uses an Interface Definition Language (IDL) to
define the interfaces between distributed objects. There is movement away from
programming applications from scratch using low-level protocols. Since the process is
automated, errors don’t arise from manual handcrafting which speeds up coding, testing,
and integration. All this makes the code more reliable and maintainable. Language specific
IDL compilers convert the IDL into software headers, packages, etc. Multiple languages
could be used across the distributed architecture. Legacy code would not have to be re-
written, but they would have to be wrapped with the JCF.

5. The platforms that communicate using CORBA do not all have to be the same type of
platforms. The CORBA framework does not depend on processor type, bus type, or
operating system. Big endian processors can communicate with little endian processors.
Problems with word size are reduced. Windows applications can even talk to Unix
applications.

6. In the CORBA framework, a client and a server can be implemented in different languages
but still communicate through the ORB. Different IDL compilers convert IDL into
skeletons, stubs and interfaces in different programming languages. The ORB marshals and
de-marshals data between local processor and language-based formats and the CORBA
“wire-format.”

7. Middleware bridges and Environment Specific Inter-Operable Protocols (ESIOP) can be
used to connect to DCE, RPC, DCOM and Java Remote Method Invocation (RMI).
Commercial vendors supply RPC for the Texas Instrument (TI) C4x processor. This would
allow a CORBA capable module to talk to a digital signal processor (DSP) that uses RPC.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-12

The CORBA General Inter-ORB Protocol (GIOP) allows a CORBA implementation to be
ported over different transport layers than just the TCP/IP based Internet Inter-ORB
Protocol (IIOP).

8. CORBASecurity Services can provide up to Orange Book level B2 security.

9. Distributed Common Object Model (DCOM), is Microsoft proprietary. More vendors
support CORBA, and CORBA is supported on more platforms than DCOM. CORBA is
more applicable to the real-time domain than DCOM because of scalability and speed
related services.

10. CORBA defines several services that support faster than “standard” speed. The
CORBAreal-time service can provide thread priorities and present quality of service (QoS)
options to the application. The CORBAtelecom service describes the use of a low-latency
by-pass of the standard CORBA stack. Control is performed using standard CORBA
Interfaces. Data is streamed outside of the CORBA ORB.

11. Timing studies have been made of the data flowing up and down a protocol stack. These
studies indicate that less than 20% of the processing time is spent in the CORBA part of the
stack. It should be remembered that the majority of the processing performed by CORBA
is not unnecessary overhead. The CORBA ORB, stubs, skeletons and helper files
“automate” what would have to be done “by hand” in a traditional message based system.
This automatic generation of the code reduces the SLOC count that has to be developed and
reduces development time and cost.

2.2.2.2 CORBA Timing Studies
The synchronization of data between two distributed objects, a Producer and a Consumer, can occur in
one of four ways:

1. No Synchronization – if the socket is not available, the data is dropped.

2. Synchronization with Transport – the data makes it to the socket but one doesn’t know if
the Consumer received the data.

3. Synchronization with Socket – the data makes it to the server (Consumer) but the Producer
doesn’t wait for the Consumer to process the data. This technique means the data is
guaranteed to make it to the Consumer.

4. Full Synchronization – the data makes it to the server (Consumer) and the Producer waits
for Consumer to process the data.

The implementation of a CORBA operation by an ORB depends on the location of the Consumer and
Producer and the capabilities of the ORB. The implementations, listed in order of best timing
performances, are:

A. Collocated – where the Consumer and Producer are within the same address (process) space. The
collocation call acts as a virtual language Function call and there is no marshalling of data. The
collocated timing is a maximum of 20 microseconds depending on the ORB and the processor.
This timing has verified on a COTS 200 MHz Pentium processor.

B. Local – where the Consumer and Producer are in separate address space (different processes) but on
the same processor. The times for local process to local process CORBA communication varies on
the processor speed, ORB capability, and whether two different ORBs are being used for the local
communication. When two different ORBs are used, the IIOP communication mechanism is being
used. If the same ORB is being used for both the Consumer and Producer objects, then the vendor
may have optimized the communication between them by using a local Object Adapter (OA) instead
of an IIOP OA, thus no marshalling of the data occurs. This can make the local communication twice

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-13

as fast as the IIOP transfer. This local OA could be implemented using shared memory or UNIX
Domain Protocol for data transport. One CORBA vendor, ORBexpress, provided the following
timing information for local communication:

1. Using a one-way operation passing 64 bytes of data:
a) 50 microseconds on a Sun UltraSPARC 5 with a 270 MHz UltraSPARC IIi (small cache)

running Solaris 2.6.

b) 40 microseconds on a PC with a 266 Mhz Pentium II processor running Windows NT.

2. Using a two-way operation passing 64 bytes of data:
a) 310 microseconds on a PC with a 266 Mhz Pentium II processor running Windows NT.

The ORB used about 80 microseconds of the total processing time.

b) 315 microseconds on a Sun UltraSPARC 5 with a 270 MHz UltraSPARC IIi (small cache)
running Solaris 2.6. The ORB used about 115 microseconds of the total processing time.

Other vendors show local times from a low of 200 microseconds to a high of 900
microseconds depending on the processor speed and length of the data transfer.

C. Processor-to-Processor – where the Consumer and Producer are on separate processors. The
communication conforms to the GIOP/IIOP protocol at the above synchronization levels. The most
important features of the ORB with respect to the performance of the request delivery mechanism are
the speed of marshalling, the efficiency of the communication mechanism, the speed of dispatching
(especially with respect of scalability and demultiplexing in the Object Adapter), and the speed of
unmarshalling. These are areas that the CORBA vendors are actively working and competing with
another to improve the performance of their products. One CORBA vendor, ORBexpress, provided
the following timing information for processor-to-processor communication:

1. Using a one-way operation passing 64 bytes of data:
a) 50 microseconds between a Sun UltraSPARC 5 with a 270 MHz UltraSPARC IIi

(small cache) running Solaris 2.6, and a PC with a 266 MHz Pentium II processor
running Windows NT.

2. Using a two-way operation passing 64 bytes of data:
a) 420 microseconds between a Sun UltraSPARC 5 with a 270 MHz UltraSPARC

IIi (small cache) running Solaris 2.6, and a PC with a 266 MHz Pentium II
processor running Windows NT.

b) 370 microseconds between two 300 MHz UltraSPARC workstations.

Another test report comparing various ORB vendors using one-way operations for sending data
of varying lengths provided additional information. The Visibroker showed the best timing for
one-way operations with no parameters of 130 microseconds per call, second was Tao at 180
microseconds. Visibroker’s best one-way times were 671 microseconds for 1k array of
characters and 6.25 milliseconds for 10k sequence of characters. The Tao was second best at
701 microseconds for a 1k array of characters. The test noted that these results are limited by the
network bandwidth. The two-way (synchronization) tests showed the performance was at least
twice as slow as a one-way operation. Certain of these two-way times have been verified using
COTS 200 MHZ pentium processors connected by a 100BaseT Ethernet. For all the tests, the
server was running on a Compaq Proliana 333MHz bi-Pentium II machine with 512Mb of
RAM and the client was running on a 266MHz Pentium II with 64Mb of RAM. Both were

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-14

running on Windows NT 4.0. The client and the server machines were communicating thanks
to 16Mb Token Ring cards.

The scalability implementation of an ORB impacts the timing performance of an ORB server. Scalability
is measured by how well an ORB scales based upon the number of object adapters, the number of objects
within an object adapter, the number of operations in an interface, and the nesting level of interfaces.
There are real-time ORBs (Visibroker, ORBexpress, TAO, etc.) currently addressing scalability where no
performance degradation is detected, which means the time is basically the same for dispatching a call to
the first object as it is for the 1000th object.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-15

2.2.2.3 Processor Environment Rationale

A POSIX compatible operating system is required. POSIX is an ISO/IEEE standard. Some Real-Time
Operating Systems (RTOSs) are fully POSIX compliant. Even more RTOSs support at least a subset of
real-time POSIX. Many CORBA vendors have specifically targeted the POSIX RTOSs. This provides
COTS CORBA and POSIX interoperability. Code written to run on top of a POSIX compatible RTOS
can be ported to another POSIX compatible RTOS. There are different POSIX language bindings.
C/C++ and Ada legacy code can run on POSIX compatible RTOSs. A handheld device may not need all
the POSIX environment features. POSIX is scaleable in that only the components actually used need to
be included into a software build. A handheld device may not need an RTOS. If a domain does not need
an operating system, POSIX is not required. Performance data for LynxOS and VxWorks indicates that
POSIX will not be a performance problem. Full up POSIX implementations support multiple processes.
Multiple processes and memory management are basic requirements for achieving FAA and NSA
certification.

Languages with their own processing environments, such as Java are also ideally suited to support the
JTRS processing environment. Java can be compiled for speed or run on a Java Virtual Machine. There
are also processors that directly execute Java byte codes. The Java Application Programming Interfaces
(APIs) provide an environment that is more complete and portable than POSIX. One possible
environment being considered is a Java program running in a POSIX process.

2.2.2.4 JCF Rationale
Plug and play software modularity is an explicit requirement of the JTRS. When the JTRS powers up, the
JTRS does not know what hardware or software is available or needed. The core components of the JCF
are the DomainManager, ResourceManager and software Resource. This triad provides the ability to
investigate the capabilities of a JTRS domain and implement the requested functionality.

An application in a distributed environment can consist of many different software components
(Resources). These components can be objects, processes, and/or threads on many different processors.
The CORBA Resource interface is specific enough to exert the required control but generic enough to
support many different applications.

A ResourceManager has two purposes. A ResourceManager provides the DomainManager with a
property list of the hardware devices and software resource co-located with the ResourceManager. The
ResourceManager also oversees the operation of the co-located software Resources.

The DomainManager keeps track of the Domain Profile. The Domain Profile keeps track of the device
properties and software resources on the JTRS domain. The DomainManager uses the ResourceManager
and other JCF components to distribute and connect software Resources.

The JCF is as an open, non-proprietary architecture. Eventually, the JCF will be available from multiple
vendors. The entire purpose of the JCF is to bring up a distributed application in a controlled and secure
manner. Because of the use of CORBA and a standardized processor environment, the JCF supported
components should be able to port between different processors, RTOSs, buses, and ORBs. The JCF is
lightweight, and the number of interfaces and operations required by the JCF has been kept to a
minimum. The JCF scales to all JTRS domains (airborne, maritime, mobile, and handheld). All JTRS
domains have the same requirements for installing/upgrading multiple applications, and dynamically
allocating these resources to physical assets and linking them to other software Resources. The linking of
Resources to other Resources occurs within a processor and across a bus for all the JTRS domains.
CORBA vendors code (ORB core, and the size of generated stubs and skeletons code form the IDL
compiler) are scalable. Some ORBs currently have small footprints around 20 kbytes. The use of
CORBA and POSIX provide a basis for security and safety.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-16

2.2.3 Functional View

2.2.3.1 JTRS Software Reference Model
The JTRS software reference model is derived from the PMCS software reference model. This model is
depicted in figure 2.2-1. The key points about the software reference model are:

1. It serves as the basis for defining the functional view of the JTRS Software Architecture

2. It broadly introduces the various functional roles performed by JTRS software entities
without dictating a structural model of these elements

3. It broadly introduces the control and traffic data interfaces between the functional software
entities

4. It introduces the color coding of each functional entity used throughout the definition of the
JTRS Software Architecture.

Analog

Control

RF Modem INFOSEC Internetwork
Utility,
Router,

Network,
Bridge,

Link

Digital Data

System Control

HCI (Control)

Security Monitor
(part of INFOSEC)

Air

I/O

HCI
(Data)

Black Proc.
Utility,
Router,

Network,
Bridge,

Link

Antenna

Utility,
Access

Utility,
Access

Waveform,
Repeater

Waveform

Figure 2.2-1. PMCS Functional Reference Model Applied to JTRS

The functional reference model is limited, in that it cannot form the basis of a distributed object-oriented
software architecture. For example, the networking and waveform functions performed by Black-Side
Processing and Red-Side Internetworking entities will be, in some cases, completely different functions.
In other cases, they will be completely identical functions. A software architecture that attempts to “force
fit” these functions into one place will not provide the flexibility demanded by the various JTRS domain
requirements, nor the reusability demanded by the JTRS software requirements. The functional model
has been used as a point of transition (or “evolution”) into the distributed object-oriented architecture
defined by the other three software views (i.e., structural, logical, and use case).

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-17

2.2.3.2 Transition from Functional Model to OO Model

JTRS software applications will perform user communication functions that include modem-level digital
signal processing, link-level protocol processing, network-level protocol processing, internetwork routing,
external access, security, and embedded utility behavior. These are user-oriented or non-core
applications, i.e., applications that are not part of the JTRS “core” framework (JCF). The term “non-
core” is not meant to imply that these applications are not important. Without them, the JTRS does not
perform any useful function, so they are extremely important. A conceptual model of JTRS non-core
applications is depicted in figure 2.2-2.

Conceptual Model of
JTRS Non-Core Applications

Modem

INFOSEC HCI

JTRS Core Framework (JCF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Non-Core Application

0..*

Resource
1

0..*

ModemResource

Modem NAPI

INFOSECResource AccessResource UtilityResourceLinkResource

Link NAPI

NetworkResource

Network NAPI
0..* 0..* 0..*0..* 0..*

Aggregation

Multiplicity

Association

Child

“Inheritance”
Relationship

Parent

Figure 2.2-2. Conceptual Model of JTRS Non-Core Applications

To help transition from the Functional View to the object-oriented views described in the sections that
follow, it is useful to consider non-core applications not as functions but as resources that can inherit
common types of behavior and common types of interfaces. The conceptual model of a resource is
depicted in figure 2.2-3. Notice that a resource encapsulates base class interfaces that support the
establishment (registration) of message paths (or “circuits”) between resources, provide a “pipe” for
message communication between resources, and provide standard methods of managing the states of
resources. Subclasses of a resource extend the base class interfaces to more specific types of resources
that implement the non-core application behaviors or “functions”. Networking Application Program
Interfaces (NAPIs) are the means by which the base class interfaces are extended to overlay the JTRS
Software Architecture onto the JTRS networking architecture. NAPIs are defined in the section 2.5 -
Networking View.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-18

The types of Resources that are created within a radio domain include but are not limited to:

• Modem Resource – This resource extends the basic resource definition by adding the physical
interfaces that are common to all modem devices.

• Link Resource – This resource extends the basic resource definition by adding the link layer
interfaces. The Link Resource can be implemented on both sides of the INFOSEC boundary as
depicted by the Link Resource color in figure 2.2-3.

• Network Resource – This resource extends the basic resource definition by adding the network
layer interfaces. The Network Resource can be implemented on both sides of the INFOSEC
boundary as depicted by the Router color in figure 2.2-3.

• Access Resource – This resource extends the basic resource definition by adding a set of multi-
media resources such as audio, video, serial, Global Positioning System (GPS), and Ethernet.
These resources contain the device drivers and the protocol.

• INFOSEC Resource – This resource extends the basic resource definition by adding the
INFOSEC and crypto interfaces.

StateManagementMessageMessageRegistration

Resource 1

0..*

Conceptual Model of
JTRS Resources

Base Class Interfaces

INFOSEC
DomainResource

INFOSECResource

Waveform
ModemResource AudioResource

AccessResource

are example types of

SitAwareResourceMsgFilterResource

UtilityResource

are example types of

LinkResource

Link NAPI

Waveform
LinkResource

Waveform
NetworkResource

NetworkResource

Network NAPI

Repeater
Resource

Bridge
Resource

Router
Resource

Gateway
Resource

Modem

INFOSEC HCI

JTRS Core Framework (JCF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

are example types ofare example types of are example types ofare example types of

Modem
Agent

INFOSEC
Agent

Ethernet
Resource

Serial
Resource

Host
Agent

ModemResource

Modem NAPI

Figure 2.2-3. Conceptual Model of JTRS Resources

Each specialized resource may also be extended by a Waveform resource by adding more functionality as
necessary. Each resource can be associated with zero or more other resources. The implementation of a
resource determines the relationships it will have with other resources within the radio domain.

Non-core applications will provide internal behavior to implement specific waveform, networking,
security, user access, and other embedded utility “functionality,” which may be likened to PMCS
identified sub-functions. This internal behavior is not dictated by the JCF. Rather, the JCF allows all
non-core applications to be derived from the base Resource class. Where the hardware or security
architecture in a given implementation may prevent a non-core application from being implemented as a

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-19

Resource class CORBA software object, e.g., a time-critical DSP function, or an embedded COMSEC
chip control function, the interface to this application will be through a Resource class object.
Discussions of encapsulated resources and agent resources are provided in section 2.2.5.

Modem Resources are hosted on Modem class hardware devices, INFOSEC Resources are hosted on
INFOSEC class hardware devices, and the remaining resources are hosted on Black or Red Processor
class hardware devices.

2.2.3.2.1 System Control Functions
Core applications, which are a part of the JCF, support the non-core applications by providing the
necessary function of control as well as standard interface definitions that the non-core applications use to
ensure plug and play, ready to execute modularity. This allows industry-wide development of non-core
applications to a common standard framework.

Elements of the JCF provide the system control functions for managing hardware assets, installing,
creating, and managing software resources, managing files, and providing run-time services. These
elements are depicted in figure 2.2-4 and are described in further detail in Section 2.2.5 - Logical View.

Conceptual Model of the
JTRS Core Framework (JCF)

Relationships

0..*

MessageRegistration

StateManagement

JCF Services
Logger
Installer
Timer

DomainManager

Resource

Message

FileManager

0..*
1

1
1..*

1..*
1

0..*

1..*

0..*

1
0..*

1..*1

0..*

“Using”
Relationship

Source

“Inheritance”
Relationship

Parent

Child

Association Aggregation

Multiplicity

Class

FileSystem

Active
Class

Target

Factory

HW Device

ResourceManager

JTRS Core Framework (JCF)

Commercial Off-the-Shelf (COTS)

JTRS and/or Legacy Applications

File

1

0..*1

1

1

Figure 2.2-4. Conceptual Model of JTRS Core Framework (JCF)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-20

2.2.3.2.2 Modem Resource Functionality

A conceptual model of JTRS Modem Resources is shown in figure 2.2-5. The high diversity of digital
signal processing solutions, both in hardware and software, requires the JTRS Software Architecture to be
flexible in accommodating a wide range of implementations. From the software architecture perspective,
a standard for the control and interface of a modem layer, which encapsulates diverse implementations of
smart antenna, RF, and modem functions is a critical concept. The JCF base class interfaces are extended
to modem resources through the Modem NAPI, which provides a standard interface for control and
communication with modem layer operations from a higher (link layer) resource. The inclusion of a
modem agent resource in the architecture provides a transparent gateway for those implementations in
which a CORBA capable link resource is communicating with a non-CORBA capable modem resource.
The modem agent provides the translation between the Modem NAPI and the API set of the non-CORBA
capable modem resource. Using the Modem NAPI, the link resource is isolated from this translation. The
modem agent is thus transparent to the link resource, which greatly enhances the reusability of the link
resource with multiple modem implementations. NAPIs are defined in the section 2.5 - Networking
View.

The operations performed by the modem resources will vary depending on waveform requirements as
well as hardware/software allocation and are not dictated by the JCF. Typical RF and modem operations
are depicted within the example subclasses. These operations are consistent with the allocations depicted
in the Networking View as well as the PMCS model.

StateManagementMessageMessageRegistration

Conceptual Model of
JTRS Modem Resources

Base Class Interfaces

Resource
1

0..*

LinkResource

Link NAPI

ModemResource

Modem NAPI

WaveformModemResourceWaveformRF_Resource RepeaterResourceModemAgentResource

TranslateModem

1..* 1

are example types of

Modem

INFOSEC HCI

JTRS Core Framework (JCF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
selfTest

Modulate Demodulate
Interleave Deinterleave
FEC_Encode FEC_Decode
Spread Despread
Filter Synchronize
Track Correlate
AcquirePacket SchedulePacket
TimeStamp TRANSEC
selfTest

Retransmit
ControlModem

Figure 2.2-5. Conceptual Model of JTRS Modem Resources

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-21

2.2.3.2.3 Networking Resource Functionality

A conceptual model of JTRS networking resources is shown in figure 2.2-6. The JCF base class
interfaces are extended to link layer and network layer resources through the Link NAPI and Network
NAPI, which provide a standard interface for control and communication between modem, link, and
network layer resources. NAPIs are further defined in the section 2.5 - Networking View.

The operations performed by the waveform networking and internetworking resources will vary
depending on waveform requirements as well as networking requirements and are not dictated by the JCF.
Resources that provide networking behavior including repeater, link, bridge, network, router, and gateway
operations are depicted within the example subclasses. These operations are consistent with the
allocations depicted in the Networking View as well as the PMCS model.

Note that the Networking Resources may implement wireless IP routing external to the JTRS and should
not be confused with underlying IP stacks that support interprocessor communication within a JTRS.

1

0..*

StateManagementMessageMessageRegistration

Resource

Conceptual Model of JTRS
Networking Resources

Base Class Interfaces

WaveformLinkResource

LinkResource

Link NAPI

NetworkResource

Network NAPI

ModemResource

Modem NAPI

UtilityResource

RepeaterResource GatewayResource

11..*
1

1..* 1
1..*

are example types of are example types of

Modem

INFOSEC HCI

JTRS Core Framework (JCF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
selfTest

Retransmit
ControlModem

BridgeResource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

RouterResource

TranslateAddress
Route
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

TranslateMessage
TranslateVoice
TranslateVideo

WaveformNetworkResource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQuality
AnalyzeNetworkQuality
selfTest

Figure 2.2-6. Conceptual Model of JTRS Networking Resources

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-22

2.2.3.2.4 Access Resource Functionality

A conceptual model of JTRS access resources is shown in figure 2.2-7. An access resource provides
access to JTRS hardware devices and external physical interfaces. The operations performed by an access
resource will vary depending on the JTRS hardware assets as well as the physical interfaces to be
supported and are not dictated by the JCF. Typical access operations are depicted within the example
subclasses.

1

0..*

Conceptual Model of JTRS
Access Resources StateManagementMessageMessageRegistration

Resource

Base Class Interfaces

AccessResource

 are example types of

NetworkResource

Network NAPI
UtilityResource

LinkResource

Link NAPI

SerialResource EthernetResource AudioResource

1

1..*

1..*

1..*

1

1

Modem

INFOSEC HCI

JTRS Core Framework (JCF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

ConfigurePort
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

Figure 2.2-7. Conceptual Model of JTRS Access Resources

2.2.3.2.5 INFOSEC Resource Functionality
A conceptual model of JTRS INFOSEC resources is shown in figure 2.2-8. Typical INFOSEC operations
are depicted within the example subclasses. The high diversity of INFOSEC solutions, both in hardware
and software, requires the JTRS Software Architecture to be flexible in accommodating a wide range of
implementations. TRANSEC and COMSEC requirements vary between waveforms. The location of the
INFOSEC boundary with respect to networking requirements also varies between waveforms. An
INFOSEC resource must also provide key fill, key management, programmable INFOSEC device control
and interface, and software integrity and authentication services.

The JCF base class interfaces are extended by the INFOSEC resource to provide specific INFOSEC
services within each type of INFOSEC domain implementation. The inclusion of an INFOSEC agent
resource in the architecture provides a transparent gateway for those implementations in which other
CORBA capable resources, e.g., modem, link, network, and utility resources, are communicating with a

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-23

non-CORBA capable INFOSEC resource. The INFOSEC agent provides the translation between these
CORBA capable resources and the API set of a non-CORBA capable INFOSEC resource. This isolates
these other resources from the INFOSEC API translation. The INFOSEC agent is thus transparent to
these other resources, which greatly enhances the reusability of these resources with multiple INFOSEC
implementations. The JCF base class interfaces can be extended to include a standard set of INFOSEC
interface functionality for INFOSEC domains. This would allow the resources to be more plug and play
across implementation domains.

1

0..*

StateManagementMessageMessageRegistration

Resource

Conceptual Model of JTRS
INFOSEC Resources

Base Class Interfaces

INFOSECResource

NetworkResource

Network NAPI

LinkResource

Link NAPI

Encrypt Decrypt
Fill Zeroize
SetKey Rollover
Authenticate Bypass
GenerateTRANSECStream
selfTest

AccessResource

UtilityResourceModemResource

Modem NAPI
11

1..*

1..* 1..*

1..*

1..* 1..*

1..*

1..*

INFOSECAgentResource

TranslateINFOSEC

INFOSECDomainResource

are example types of

Modem

INFOSEC HCI

JTRS Core Framework (JCF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Figure 2.2-8. Conceptual Model of JTRS INFOSEC Resources

2.2.3.2.6 Utility Resource Functionality
A conceptual model of JTRS utility resources is shown in figure 2.2-9. The operations performed by the
utility resources will vary depending on the embedded applications to be supported, as well as host
interface protocol requirements and are not dictated by the JCF. Typical utility operations are depicted
within the example subclasses. These operations are consistent with the allocations depicted in the
Networking View, as well as the PMCS model.

The wide range of host system protocols and interfaces that the JTRS must support requires the JTRS
Software Architecture to provide support for both CORBA-capable and non-CORBA- capable host
system implementations. Many of the JCF defined interfaces are designed to be extended “outside the
box,” for use by CORBA-capable host systems. Where legacy or non-CORBA-capable host systems
prevent the direct use of the JCF interfaces, the JTRS architecture includes a Host agent resource to
provide a transparent gateway between the JCF interfaces and the non-CORBA-capable host system. The
Host agent provides the translation between the CORBA-capable JTRS resources and the API set of a
non-CORBA-capable host system. This isolates the JTRS resources from the Host API translation. The

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-24

Host agent is thus transparent to the JTRS resources, which greatly enhances the reusability of these
resources with multiple Host system implementations.

1

0..*

StateManagementMessageMessageRegistration

Resource

Conceptual Model of
JTRS Utility Resources

Base Class Interfaces

 are example types of

HostAgentResource

TranslateHost

GatewayResource SitAwareResource

NetworkResource

Network NAPI

UtilityResourceLinkResource

Link NAPI

1

1..*

1..*

1..*

1

1

AccessResource

Modem

INFOSEC HCI

JTRS Core Framework (JCF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

CollectPositionReports
ConsolidatePositionReports
DisseminatePostionReports
selfTest

TranslateMessage
TranslateVoice
TranslateVideo
selfTest

MsgFilterResource

TypeFilter
GeographicFilter
PriorityFilter
selfTest

Figure 2.2-9. Conceptual Model of JTRS Utility Resources

2.2.4 Structural View

2.2.4.1 Open Multi-layered Structural Architecture

The JTRS software structural architecture is shown in figure 2.2-10. The structural architecture view
provides the best graphical depiction of the JOE. The key aspects of the structural architecture are:

1. Complies with the technical architecture of the JTA,

2. Maximizes the use of commercial protocols and products,

3. Isolates both core and non-core applications from the underlying hardware through multiple
layers of open, commercial software infrastructure, and

4. Provides for a distributed processing environment through the use of CORBA to provide
software application portability, reusability, and scalability.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-25

JTRS Core Framework (JCF)

Commercial Off-the-Shelf (COTS)

JTRS and/or Legacy Applications

Black Hardware Bus

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Protocol Stacks

Board Support Package (Bus Layer)

POSIX Operating System

JTRS
Modem

Applications

JTRS
Link, Network
Applications

JTRS
Link, Network
Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
HCI

Applications

JTRS
Modem

Applications

JTRS
Link, Network
Applications

JTRS
Link, Network
Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
HCI

Applications

JTRS Core Framework IDL (“Logical Software Bus” via CORBA)

Red Hardware Bus

Non-CORBA
Modem

Applications

Non-CORBA
Modem

Applications

Non-CORBA
Modem

Applications
Non-CORBA
Modem API

Non-CORBA
Infosec

Applications

Non-CORBA
Infosec

Applications

Non-CORBA
Infosec

Applications

Non-CORBA
HCI

Applications

Non-CORBA
HCI

Applications

Non-CORBA
Host

Applications
Non-CORBA

INFOSEC APIRF

JTRS
Modem

Applications

JTRS
Link, Network
Applications

JTRS
Link, Network
Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
Host

Applications

Modem NAPI Link, Network NAPI Link, Network NAPI

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Protocol Stacks

Board Support Package (Bus Layer)

POSIX Operating System

Non-CORBA
Host API

Figure 2.2-10. JTRS Software Structure

2.2.4.1.1 Bus Layer (Board Support Package)
The JTRS Software Architecture is capable of operating on most commercial bus architectures. The JOE
relies on reliable transport mechanisms, which may include error checking and correction at the bus
support level. This allows support for VME, PCI, CompactPCI, Firewire (IEEE-1394), Ethernet, and
others. The JOE does not preclude the use of different bus architectures on the Red and Black
subsystems. The choice of bus architecture is driven by the bandwidth and latency requirements of the
non-core applications. The core applications and CORBA ORB should be considered, but should not
impact the decision.

2.2.4.1.2 Network Stacks & Serial Interface Services

The JTRS Software Architecture relies on commercial components to support multiple unique serial and
network interfaces. The JOE relies on reliable transport mechanisms, which may include error checking
and correction at the network and serial interface level. These interfaces can be selected to provide the
interfaces necessary to support the platform implementation. Possible serial and network physical
interfaces include: RS232, RS422, RS423, RS485, Ethernet, 802.x, and others.

To support these interfaces, various low-level network protocols may be used. They may include PPP,
SLIP, CSLIP, LAPx, and others. Using these protocols, other protocols such as IP, TCP/UDP, and X.25
can be added to provide network connectivity. The standard transport mechanism for non-colocated calls
using CORBA 2.2 is GIOP on top of TCP/IP. Protocols to support ancillary functionality, e.g., neighbor
discovery, address resolution; etc., may also be used.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-26

2.2.4.1.3 Operating System Layer

The JTRS Software Architecture relies on a real-time embedded operating system to provide multi-
process, multi-threaded support for core applications (JCF applications), as well as non-core waveform
and networking applications. A COTS solution is desirable, as well as a standard operating system
interface for operating system services in order to facilitate portability of both core and non-core
applications. POSIX is an accepted industry standard that was developed for larger systems as a result of
UNIX distributors developing their own flavors of UNIX. POSIX and the real-time extensions are
compatible with the requirements to support the OMG’s RT CORBA specification. Complete POSIX
compliance encompasses more features than are necessary to control the JTRS. Even though modern
systems are more compact, have greater memory and processing speeds, a more streamlined version of
POSIX is necessary for the embedded real-time JTRS. This has led to the recommendations contained in
the POSIX.13 standard. These recommendations are discussed in Appendix C.3.

2.2.4.1.3.1 Memory Management

Memory Management is useful in all phases of the JTRS. Not only will memory management be
required to achieve MLS, but it is useful in the development environment as well. During development,
common coding errors, such as stray pointers and indexing beyond array boundaries, can result in one
process accidentally overwriting the data space of another. This can cause many wasted hours of
debugging to determine the cause. In an MLS, system memory management protection prevents other
processes or threads from reading memory that is outside its allocated area, thus preventing an
unclassified process from gaining access to classified data. If a process attempts to access memory that is
explicitly declared or allocated for the type of access attempted, the memory management unit (MMU)
hardware will notify the operating system (OS) kernel, which can then abort the process immediately at
the offending program statement. The kernel can then log information about the process that has caused
the access violation for later review. This protects processes from each other, prevents coding errors from
damaging memory used by other processes, protects the kernel memory, and supports the JTRS security
architecture.

The JTRS Software Architecture recommends the use of processors equipped with MMUs wherever the
COTS OS and CORBA middleware services are hosted.

2.2.4.1.3.2 Solid State File System Drivers
The JTRS will host many waveforms. These different waveform applications will need to be added, read
and distributed, replaced, and removed from a mass storage device. Rotating magnetic media are
vulnerable to shock, vibration and acceleration, but could continue to be used in semi-permanent or
permanent installations. For mobile platforms, solid-state disks (SSD) are the best solution.

Solid-state disks are random access, high-speed storage peripherals that use memory chips such as Flash,
EPROM, or SRAM. SSDs give faster and more efficient operation, a longer life span, and a lower risk of
breakdown or data loss than their magnetic cousins. Many SSDs incorporate industry standards, so the
interface is compatible with most operating systems. Also, many of these SSDs follow military standards
for shock and vibration. These characteristics make SSDs an ideal solution for harsh environmental and
mission critical applications where availability and reliability is important.

While the JTRS Software Architecture does not require the use of SSDs, they are ideally suited to the
rugged, embedded JTRS environment. The JTRS Software Architecture recommends the use of POSIX-
compliant file system services as discussed in the POSIX compliance section in Appendix C.3. These
POSIX services supported by the OS are extended by the CORBA-based JCF definitions of FileManager,
FileSystem and File Interfaces for remote and/or distributed Network File System (NFS) type of file
access.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-27

2.2.4.1.4 CORBA Middleware

CORBA is a cross-platform framework that can be used to standardize client/server operations when
using distributed processing. Distributed processing is a fundamental aspect of the JTRS system
architecture and CORBA is the mostly widely used “middleware” service for providing distributed
processing. A summary of the features and benefits of CORBA are contained in the following
paragraphs. A more detailed discussion of these features is provided in Appendix C.4.

The idea behind the CORBA framework is to replace traditional message passing. As much as possible,
the CORBA architecture tries to make the exchange of messages look to the client and server software
applications like a normal, local function invocation. The CORBA protocol code handles the bit packing
and handshaking required for delivering the message.

The IDL is an object-oriented language used to define the interface between a client and a server. This
interface definition acts as a contract between the client and the server applications. An interface is
defined as a collection of methods and object attributes. Methods are also known as messages in object-
speak and correspond to functional operations, function calls and procedure calls. All JCF interfaces are
defined in IDL, and thus serve as a contract between the JTRS applications that use them.

The features and benefits of CORBA, including its significant technical advantages over earlier
distributed processing techniques, the maturity of the OMG specifications, the ability to define interfaces
in IDL, the wide commercial availability of CORBA products, and the wide industry acceptance of
CORBA led to the selection of CORBA for the JTRS architecture.

2.2.4.1.5 Application Layer

JTRS software applications will perform user communication functions that include modem-level digital
signal processing, link-level protocol processing, network-level protocol processing, internetwork routing,
external access, security, and embedded utility behavior. These are user-oriented or non-core
applications, i.e., applications that are not part of the JCF. Core applications, which are a part of the
JCF, support the non-core applications by providing the necessary function of control as well as standard
interface definitions that the non-core applications can use. This allows industry-wide development of
non-core applications to a common standard framework. Section 2.2.5 - Logical View shows the
relationship between the JCF and non-core applications and Appendix C.2 illustrates their use through
examining example Use Cases of some fundamental radio operations.

2.2.4.1.5.1 JTRS Core Framework

The JCF enables the development and use of JTRS software applications in a distributed, plug and play
context. The JCF consists of the following interfaces, core applications, and core services:

• Base CORBA interfaces (Message, MessageRegistration, StateManagement, and Resource) that
are inherited by core and non-core software applications

• Core applications (DomainManager and ResourceManager) that provide framework control of
resources

• Core services that support both core and non-core applications (Logger, Installer, Timer,
FileManager, FileSystem, and File)

• A core Factory interface for controlling the life span of core and non-core applications.

2.2.4.1.5.2 Non-Core Applications
Non-core applications consist of one or more resources. These resources implement the Resource
interface or NAPI interfaces. The application developers can extend these definitions by creating
specialized Resource interfaces for the application. At a minimum, the extension has to come from the
Resource interface. Through the use of the JCF, a developer can more easily reuse software developed

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-28

for JTRS and reduce the NRE to produce new capability. Currently, the JTRS Software Architecture
defines the following types of non-core applications or resources, but does not preclude the definition of
other types:

1. Modem Resource

2. Link Resource

3. Network Resource

4. Access Resource

5. INFOSEC Resource

6. Utility Resource.

The internal behavior of a resource is not dictated by the JTRS Software Architecture. This is left to the
application developer. The interfaces by which a resource is controlled and communicates with other
resources are defined by the JCF interfaces and are described in the following section.

2.2.5 Logical View

This section contains the detailed description of the JCF interfaces and operations. This includes a
detailed description of the purpose of the interface, the purpose of each supported operation within the
interface, the IDL for each operation, and interface class diagrams to support these descriptions.

2.2.5.1 JTRS Core Framework
Figure 2.2-11 depicts the key elements of the JCF and the relationships between these elements. A
DomainManager object manages the software Resources and hardware assets within the radio. Some of
the software Resources may directly control the radio’s internal hardware assets or interface devices. For
example, a ModemResource may provide direct control of a modem hardware device such as an FPGA or
an ASIC. An AccessResource may operate as a device driver to provide external access to the radio.
Other software Resources have no direct relationship with a hardware device, but perform application
services for the user. For example, a NetworkResource may perform a network layer function. A
WaveformLinkResource may perform a waveform specific link layer service. Each Resource can
potentially communicate with other Resources. These Resources are allocated to one or more
ResourceManager objects by the DomainManager object based upon various factors including the
hardware devices that the ResourceManager knows about, the current availability of hardware devices,
the behavior rules of a Resource, and the loading requirements of the Resource.

The Resources being managed by the DomainManager object are CORBA objects implementing the
Resource interface. Some Resources may be dependent on other Resources. This interface provides a
consistent way of creating up and tearing down any Resource within the radio. These resources can be
created by using a Factory interface or by the ResourceManager interface.

The file services: FileManager, FileSystem, and File are the interfaces that are used to support installation
and removal of application files within the radio, and for loading and unloading application files on the
various processors that the ResourceManagers execute upon.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-29

F i l e

F i l e S y s te m

1

0 . . *

1

0 . . *

F i l e M a n a g e r

1 . . *

0 . . *

1 . . *

0 . . *

H a r d w a r e D e v ic e

F a c t o r y

R e s o u r c e M a n a g e r

1 . . *

1 . . *

1 . . *

1 . . *

k n o w s a b o u t

1

0 . . *

1

0 . . *

c r e a t e s

0 . . 1

1

0 . . 1

1

1 . . *

1

1 . . *

1
D o m a i n M a n a g e r

0 . . *

1

0 . . *

1

r e q u e s t r e s o u r c e

1

1

1

1

1 . . *1 1 . . *1 a ll o c a t e r e s o u r c e s t o

J C F S e r v i c e s
L o g g e r
In s t a l le r
T im e r

0 . . *0 . . *

R e s o u rc e 0 . . *1 0 . . *1
c o n t r o ls

0 . . *

0 . . 1

0 . . *

0 . . 1

c r e a t e s

0 . . *

1

0 . . *

1

c r e a t e s

0 . . *

1

0 . . *

1

m a n a g e s

0 . . *

1

0 . . *

c o m m u n i c a t e s w i t h

1

0 . . *0 . . *

Figure 2.2-11. JTRS Core Framework (JCF) Relationships

2.2.5.1.1 Base Class Interfaces
All Resources inherit and encapsulate the base JCF interfaces of:

• StateManagement – This interface provides state and configuration behavior for a Resource.

• MessageRegistration – This interface provides the creation of the virtual circuits amongst the
source (producer) and sink (consumer) Resources within the radio.

• Message – This interface provides the process message operation that is implemented by a sink
(consumer) Resource and issued by a source (producer) Resource.

2.2.5.1.1.1 StateManagement

The StateManagement interface defines the generic object operations for:

• Testing.

• Configuring (setting) and querying (retrieving) an object’s properties. The parameter type for
properties is based upon the CORBA any type. This provides the greatest flexibility for
developing software by leaving the implementation up to the developer not by the core
framework definition. The CORBA any type is also minimal CORBA compliant.

• Retrieving and setting state information. The state information is based upon the ISO/IEC 10164-
2 Open Systems Interconnection - Systems Management: State Management Function standard.
This standard identifies additional states which could be used to expand the definition of the
Resource states.

• Initializing and releasing an object.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-30

• Messaging control operations: start, stop, and pause.

The DomainManager object uses these interfaces to start up and tear down resources in a determinate and
consistent manner within the radio. The DomainManager object performs selfTest, configure, initialize,
and start operations for each resource it is responsible for starting up.

2.2.5.1.1.1.1 StateManagement Relationships
The definition of the StateManagement interface, captured in Rational Rose using UML notation, is as
shown in figure 2.2-12.

AdminType

ADMIN_NOT_APPLICABLE
LOCKED
SHUTTING_DOWN
UNLOCKED

(from StateManagement)

StateManagement

selfTest(testNum : inout unsigned long) : boolean
setAdminState(adminState : in AdminType) : void
getState() : StateType
configure(properties : in DataType) : boolean
query(properties : inout DataType) : void
initialize() : boolean
release() : boolean
start() : boolean
stop() : boolean
pause() : boolean

<<Interface>>

DataType
id : unsigned long
value : any

uses

OperationalType

ENABLED
DISABLED

(from StateManagement)

StateType

adminState : AdminType
operationalState : OperationalType
usageState : UsageType

(from StateManagement)

UsageType

USAGE_NOT_APPLICABLE
IDLE
ACTIVE

(from StateManagement)

Figure 2.2-12. StateManagement Relationships

2.2.5.1.1.1.2 StateManagement Interfaces
The IDL for the StateManagement interface produced from the Rational Rose diagrams in figure 2.2-12 is
shown below:

interface StateManagement {
The following type is a CORBA IDL enumeratiuon type that defines an object’s administrative states.

enum AdminType

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-31

 {
ADMIN_NOT_APPLICABLE,
 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
 };

The following type is a CORBA IDL enumeration type that defines an object's Operational states.

 enum OperationalType
 {
 ENABLED,
 DISABLED
 };

The following type is a CORBA IDL enumeration type that defines the object's Usage states.

 enum UsageType
 {
 USAGE_NOT_APPLICABLE,
 IDLE,
 ACTIVE
 };

The following type is a CORBA IDL struct type that contains an object's Admin, Operational, and Usage
states.

struct StateType {
 AdminType adminState;
 OperationalType operationalState;
 UsageType usageState;
 };

The selfTest operation performs a specific test on an object. True is returned if the test passes, otherwise
false is returned. When false is returned, the operation also returns a reason why the test failed.

boolean selfTest(inout unsigned long testNum);
The setAdminState operation sets the adminstrative state per the specified parameter.

void setAdminState(in AdminType adminState);
The getState operation returns the object’s state.

StateType getState();
The configure operation sets the object’s properties. True is returned if the configure was successful,
otherwise False is returned. Any basic CORBA type or static IDL type could be used for the
configuration data. An object’s ICD indicates the valid configuration values.

boolean configure(in DataType properties);

The query operation retrieves object’s properties. Any basic CORBA type or static IDL type could be
used for the query. An object’s ICD indicates the valid query types. The information retrieved can later
be used when an object is recreated, by calling the configure operation.

void query(inout DataType properties);

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-32

The initialize operation controls when configuration data is implemented by the resource or initializes the
devices being controlled by the resource.

boolean initialize();

The release operation releases itself from the CORBA ORB. When the object’s ORB reference count
goes go to zero, the object destructor operation will be called.

boolean release();

The start operation starts processing messages that are received from the front end and/or back end of the
radio. The object’s sink (consumer) objects are enabled for processing messages.

boolean start();
The stop operation stops processing messages that are received from the front end and/or back end of the
radio. The object’s sink (consumer) objects are disabled from processing messages and the messages are
discarded.

boolean stop();

The pause operation queues messages that are received from the front end and/or back end of the radio.

boolean pause();

 };
2.2.5.1.1.2 MessageRegistration
The MessageRegistration interface provides the operations for a Push Data Model and an Observer
Design Pattern. The Push Data Model involves a Producer (source) and Consumer (sink), where the
Producer pushes data to a Consumer. A Producer may know about a Consumer via the Observer Design
Pattern that behaves as a callback where a consumer registers itself with producers for callback to it. The
Observer Design Pattern is based on the industry-accepted design pattern2. Alternatively, the
DomainManager may establish the virtual path between a Consumer and Producer by providing the
Producer with the Consumer Resource object reference. The outcome of using the MessageRegistration
interface is the set up of a dynamic virtual path between two resources within the radio. When an
application is started up by the DomainManager within the radio, a set of virtual circuits are created
among the application resources and other resources (Access, INFOSEC, MODEM, etc.) as shown in
figure 2.2-13. Most of these Resources act as both a Consumer and Producer within the radio depending
on the direction (from antenna or to the antenna) of data. The outcome of connecting these dynamic
resources together is known as the Chain Of Responsibility design pattern, where each resource processes
the data and pushes the data to another resource in the chain who has responsibility for further processing
of the data. Only those Resources that have a need to process the data need to be included in the virtual
path.

AccessConsumer/P roducer
: AccessResource

NetworkConsumer/Producer :
NetworkResource

INFSOECConsumer/Produ
cer : INFOSECResource

LinkConsumer/Producer :
LinkResource

ModemConsumer/Producer :
ModemResource VirtualCircuits

processMsg()

processMsg()

VirtualCircuits

processMsg()

processMsg()

VirtualCircuits

processMsg()

processMsg()

VirtualCircuits

processMsg()

processMsg()

Figure 2.2-13. Example of Chained Resources

2 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-33

2.2.5.1.1.2.1 MessageRegistration Relationships

The definition of the MessageRegistration interface, captured in Rational Rose using UML notation, is as
shown in figure 2.2-14.

Destinations
Message

<<Interface>>

MessageRegistration

setSink(pushSink : in Message, destinationResource : in ResourceID_Type) : void
unsetSink(destinationResource : in ResourceID_Type) : void
setMultipleSinks(destinationSinks : in Destinations) : void
getSink(sourceResource : in ResourceID_Type) : Message
getTransferSize() : unsigned long
setTransferSize(size : in unsigned long) : void

<<Interface>>

ResourceID_Type

Destinations

DestinationType
resource : Resource
resourceNumber : ResourceNumType
resourceType : ResourceType
redSideOnly : Boolean

Resource
<<Interface>>

ResourceType

uses

ResourceNumType

Figure 2.2-14. MessageRegistration Relationships

2.2.5.1.1.2.2 MessageRegistration Interfaces
The IDL for MessageRegistration interface produced from the Rational Rose diagrams in figure 2.2-14 is
shown below:

interface MessageRegistration {

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-34

The setSink operation registers a single Message sink (Consumer) object for call back by a source
(Producer) object. The Message sink object reference is added to the source object’s list of registered
Message sinks. When pushing data to this destination the Message sink object is used.

void setSink(in Message pushSink, in ResourceID_Type destinationResource);
The unsetSink operation removes a registered Message sink (Consumer) resource from a source
(Producer) object’s registered Message Sinks.

void unsetSink(in ResourceID_Type destinationResource);
The setMultipleSinks operation registers a set of Message sink (Consumer) objects for call back by a
source (Producer) object.

void setMultipleSinks(in Destinations destinationSinks);
The getSink operation requests the Message sink (Consumer) object reference that is responsible for
processing data to be received from the requesting source (Producer) object.

Message getSink(in ResourceID_Type sourceResource);

The getTransferSize operation gets the maximum transfer message size.

unsigned long getTransferSize();

The setTransferSize operation sets the suggested transfer message size for the Producer Source.

void setTransferSize(in unsigned long size);

 };

2.2.5.1.1.3 Message
The Message interface provides one operation, ProcessMsg, for pushing data from a Producer to a
Consumer. The recommended implementation for the ProcessMsg operation is a one way CORBA
operation implemented as Synchronization with Socket method or as a co-location call. The co-location
call acts as a C language Function call. The Message interface also contains the message definition and
the control information that is sent with a message.

2.2.5.1.1.3.1 Message Relationships

The definition of the Message interface captured in Rational Rose using UML notation is as shown in
figure 2.2-15.

DirectionType
FROM_ANTENNA
TO_ANTENNA

ResourceID_Type
direction : DirectionType
number : ResourceNumType
resourceType : ResourceType

ResourceTypeResourceNumType

Message

processMsg(message : in MessageType) : void

<<Interface>>

ResourceID_Type

uses

ResourceNumType

Figure 2.2-15. Message Relationships

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-35

2.2.5.1.1.3.2 Message Interfaces

The IDL for the Message interface produced from the Rational Rose diagrams in figure 2.2-15 is shown
below:

interface Message {
Nested Types:

This type is a CORBA unbounded sequence of octets (unsigned characters).

typedef sequence<octet> MessageBuffer;
This CORBA IDL enumeration type defines the message priorities that are listed in its attributes.

enum PriorityType

 {
VERY_LOW,
 LOW,
 MEDIUM,
 HIGH,
 VERY_HIGH
 };

This CORBA IDL enumeration type defines the classified modes of operation which are listed in its
attributes.

enum ClassificationType

 {
 UNCLASSIFIED,
 SECRET,
 TOP_SECRET,
 CONFIDENTIAL
 };

This CORBA IDL struct type indicates the control options for a message.

struct MessageOptionsType {
This attribute indicates the type of message.

unsigned short identifier;
This attribute indicates the resource the message came from.

ResourceID_Type source;
This attribute indicates the resource the message is for.

ResourceNumType destination;[glb1]

This attribute indicates the trusted classified value for the message.

ClassificationType classification;

This attribute indicates the quality of service priority for the message.

PriorityType priority;
This attribute indicates the time number request for the Crypto. This number has to be equal or greater
than the Crypto timeNumber.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-36

unsigned long timeNumber;

};
This CORBA IDL struct type contains a message along with its control options.

struct MessageType {
This attribute contains the encrypted and unencrypted data.

MessageBuffer message;
This attribute describes the message's control options.

 MessageOptionsType options;
};

The processMsg operation is used to push any information to be received or transmitted through the JTRS
from one object to the next “destination” (PushSource) object. The message being pushed has data and
control information (classification, source, destination, priority, etc.).

oneway void processMsg(in MessageType message);

 };

2.2.5.1.1.4 Resource
The Resource interface defines the minimal interface for any software resource within the radio. A
Resource simply inherits and encapsulates the interfaces of MessageRegistration, Message, and
StateManagement. This small set of operations is all that a DomainManager object will know about for
any Resource object within the radio. Application Resources can, however, extend this basic Resource
definition and use their extensions amongst themselves or by their Application GUI, since they are the
only ones that know these extensions. The DomainManager interface provides the mechanism of
retrieving Resources that have been created for direct GUI usage.

2.2.5.1.1.4.1 Resource Relationships
The definition of the Resource interface captured in Rational Rose using UML notation is as shown in
figure 2.2-16.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-37

Resource
<<In terface>>

Message

processMsg()

<<Interface>>

MessageRegistration

setSink()
unsetSink ()
setMultipleSinks()
getSink()
getTransferSize ()
setTransferSize ()

<<In terface>>
StateManagement

selfTest()
setAdminState()
getState()
configure()
query()
initialize()
release()
start()
stop()
pause()

<<Inte rface>>

inherits
from

Figure 2.2-16. Resource Relationships

2.2.5.1.1.4.2 Resource Interfaces
The IDL for the Resource interface produced from the Rational Rose diagrams in figure 2.2-16 is shown
below:

interface Resource : MessageRegistration, Message, StateManagement {

 };
2.2.5.1.2 Framework Control Interfaces

2.2.5.1.2.1 DomainManager
In order to provide for the interoperability of both hardware and software resources within JTRS it is
necessary to provide for a mechanism within the system to manage resources. Resources need to be
treated in a generic manner such that hardware and software may be moved from one system to another.
This capability must allow for a module, a waveform application, and other software applications to be
updated without requiring code changes to the JCF. To assure the ability for the JCF to support this
functionality, the design includes a DomainManager.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-38

Hardware Resources

ModemModem

ProcessorProcessor

RF SwitchRF Switch

Security ProcessorSecurity Processor

DSP ProcessorDSP Processor

FPGAFPGA

Functional Applications

PCS CellularPCS Cellular

Analog CellularAnalog Cellular

Military
Wideband

Military
Wideband

New WaveformNew Waveform

Military
Narrowband

Military
Narrowband

Domain
Manager

Domain
Manager

Software Resources

Modem SWModem SW

Internetworking SWInternetworking SW

Black Processing SWBlack Processing SW

INFOSEC SWINFOSEC SW

Figure 2.2-17. Domain Management

In a Software Definable Radio (SDR) like the JTRS, it is necessary to provide a means to match generic
hardware and software resources to the desired user functionality. As shown in figure 2.2-17 the
DomainManager is the JCF component responsible for the allocating the Physical Resources in the JTRS
based on the required Functional Applications. The DomainManager uses a Domain Profile to determine
the proper allocation of resources (hardware and software) in the system.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-39

Application

Physical
Components

Resources IN

OUT

Domain
Manager

• Allocates Physical
Components to
Functional Resources

• Configures and
Tracks the States of
Functional Resources

User
Interface

Resource
Manager

Resource
Manager

Resource
Manager

Encapsulated
Resources

Figure 2.2-18. Layered Resource Allocation

Figure 2.2-18 shows that a JTRS Application can be thought of as a collection of Resources connected
together in a particular order to provide the desired functionality. Each Resource can be made up of other
Resources either software and/or hardware and in turn can require other resources.

There will be at least one Domain Manager in every JTRS. The Domain Manager component can
logically be grouped into two categories: Host and Registration. The Host operations are used to
configure the radio, manage radio capabilities, manage software resources, and provide radio status
information. The Registration operations provide the mechanism for the Resource Managers in the
system to acquire and report information about the capabilities of the system.

2.2.5.1.2.1.1 Domain Profile
The DomainManager uses a Domain Profile to store the necessary information about the resources in the
system to properly allocate and de-allocate hardware and software resources to a required Functional
Application. Physical resources, such as modems, processors, security processors, Digital Signal
Processors (DSP), and Field Programmable Gate Arrays (FPGAs), and other resources each report their
presence in the system through the JCF component called the ResourceManager. As each physical
resource in the system reports itself, the data about the resource is stored in the Domain Profile. The
DomainManager will use this information to determine the proper allocation of these resources.

A Domain Profile is the information used by the DomainManager to perform a variety of tasks including
Boot up and Initialize of Core Framework Components and Resources, the re-initialization of radio
configuration based on the state of the radio at power down, and the allocation and de-allocation of
resources. The Domain Profile also provides a place for the configuration management of software and
hardware resources available to the system. Using the Install Service, software modules are loaded into a
File System; and information such as version, resource requirements, and other information is stored in
the Domain Profile. The DomainManager uses this information to manage system resources to
accomplish the required capability of the system. For instance, an algorithm is written and compiled for a
particular Digital Signal Processor (DSP) such as the TI-TMS320C6000. Using the Install Service, the
software module is loaded into the File System and information such as version, physical hardware
requirements, and other important parameters are stored in the Domain Profile. The DomainManager
uses this information to load the software resource onto the proper allocated physical assets to accomplish
the required capability in the system.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-40

The Domain Profile also contains information about Functional Applications. Functional Applications
are a collection of generic resources that accomplish a specific user desired purpose. Examples of the
Functional Applications in a JTRS will include waveforms, network routing applications, and other high
level applications. Applications are required to be portable across many different versions of the JTRS
system. In order for an application to be portable, it will be necessary to store information about the
required capabilities for the application in the Domain Profile. The Domain Manager will use this
information to determine the requirements of the application when the User makes a request for it.

2.2.5.1.2.1.2 Application Control

The DomainManager provides interfaces to the User for starting, stopping, configuring, and managing the
radio Functional Applications. A User (automated or using an HCI) will request that a specific User
Function(s) be provided in the JTRS radio. (Using the CreateVirtualCircuit () interface). Based on the
Functional Application requested the DomainManager uses the information in the Domain Profile to
determine the devices to be allocated, configured, and used for the desired Function(s). If the required
devices are available and operational state is enabled, then the DomainManager loads and executes the
software resource files necessary to support the mode of operation. Software Resources are loaded on the
appropriate processors using a ResourceManager interface, and status is returned to identify whether the
Functional Application has been created for this request, or not.

The DomainManager is also responsible for the transition of Resource Objects through their various
states using the StateManagement interfaces. The Domain Profile will indicate which Resources to
create, and what states to transition Resources to. Based upon Domain Profile, the DomainManager may
use Naming or Trading Services to obtain a resource. A Factory resource can be obtained from Naming
or Trading Services, and may be used for starting other Resources. The DomainManager is responsible
for the setup and control of Resources within a Functional Application. The DomainManager assure the
Resources operations, including health and status, and other pertinent information about the Resource.
The DomainManager also provides a window to the User (HCI) into the state of those Resources.

The DomainManger is the JCF Component that provides the configuration capability that allows for the
ultimate flexibility for setting up Application Resources. Because of the generic approach to Resources in
the system, new waveform designs, hardware modules, and new architectural designs may still be
supported by the JCF now and in the future.

2.2.5.1.2.1.3 DomainManager Relationships

Below is a Description of the Relationships that the DomainManager component has with other JCF
Components in the system.

<uses> Factory – to request a Resource to be instantiated.
<manages> Resources – configures, manages the generic Resources in the system
<uses> FileManager – to access the necessary files
<allocates resources to> ResourceManager
The relationships for this interface are shown in the DomainManager Relationships in figure 2.2-19.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-41

DomainManager

registerDevice(resourceManagerID : in string, device : in DeviceType) : boolean
registerResourceManager(resourceManagerID : in string, resourceManager : in ResourceManager) : boolean
releaseVirtualCircuit(circuit : in CircuitNumType) : void
unregisterResourceManager(resourceManagerID : in string) : void
unregisterDevice(resourceManagerID : in string, device : in DeviceType) : void
createVirtualCircuit(configurationRequest : in ConfigurationRequestType) : void
getVirtualCircuitResource(circuit : in CircuitNumType) : Object
fileManager() : FileManager
getNetworks() : Networks
getDevices(deviceRequest : in Properties) : DeviceList
getResources(resourceRequest : in Properties) : Resources

<<Interface>>

ResourceManager
<<Interface>>

ConfigurationRequestType

FileSystem
<<Interface>>

Networks

Resources

CircuitNumType

DeviceList

DeviceType
classID : ClassID_Type
element : DeviceNumType
deviceID : DeviceID_Type

FileManager
<<Interface>>

Properties

uses

Figure 2.2-19. DomainManager Relationships

2.2.5.1.2.1.4 DomainManager Interfaces

Below is the list of Interfaces for the DomainManager Framework Component for managing the plug and
play capabilities of the JTRS radio.

interface DomainManager {

The registerDevice capability adds a device entry into the DomainManager for a specific Resource
Manager object.

boolean registerDevice(in string resourceManagerID, in DeviceType device);
The registerResourceManager adds a Resource Manager object entry into the Domain Manager object
database.

boolean registerResourceManager(in string resourceManagerID, in ResourceManager
resourceManager);

The releaseVirtualCircuit operation releases an active circuit and releases all allocated assets.

void releaseVirtualCircuit(in CircuitNumType circuit);
The unregisterResourceManager capability unregisters a Resource Manager object from the
DomainManager.

void unregisterResourceManager(in string resourceManagerID);

The unregisterDevice operation removes a device entry from the Domain Manager object.

void unregisterDevice(in string resourceManagerID, in DeviceType device);

The createVirtualCircuit operation creates a virtual circuit within the radio.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-42

oneway void createVirtualCircuit(in ConfigurationRequestType
configurationRequest);

The getVirtualCircuitResource operation returns the object reference for the specified virtual circuit.

Object getVirtualCircuitResource(in CircuitNumType circuit);
The FileMan operation returns a FileManager object reference to the main FileManager repository.

FileManager fileManager();
The getNetworks operation returns network information based upon the input network request.

Networks getNetworks();
The getDevices operation returns devices information based upon the input device request.

DeviceList getDevices(in Properties deviceRequest);
The getResources operation returns the resources information based upon the input resource request.

Resources getResources(in Properties resourceRequest);
};

2.2.5.1.2.2 ResourceManager
The ResourceManager is a JCF application in the JTRS for booting, initializing, and reporting the
capabilities of hardware modules. The ResourceManager interfaces define the means for communicating
with all the devices on a particular module within the JTRS. Processors with an instantiation of the
ResourceManager component are responsible for reporting to the DomainManager the pertinent
information about the hardware devices that it knows about. The ResourceManager uses the
deviceProperties, deviceList, and deviceExists methods to provide this information to the
DomainManager. The DomainManager uses this information to allocate these devices to specific
requested User functions.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-43

Domain
Manager

Domain
Manager

Domain
Manager

Domain
Manager
Resource
Manager
Resource
Manager

Report Device
Properties

DevicesDomain Profile

Device
Information

Figure 2.2-20. ResourceManagers Report Device Properties

Figure 2.2-20 visually demonstrates how ResourceManagers report device properties to the
DomainManager. The DomainManager uses the Domain Profile to store the information about the
Devices. The ResourceManager is responsible to indicate the state of the devices, their capabilities, and
other pertinent information about the devices. For proper interoperability, a common set of properties
needs to be reported for each module within the JTRS Architecture. These properties should provide the
basis for deciding the allocation constraints on the system. Module developers may also provide
additional properties for additional usable information.

A ResourceManager also provides the capability to load and execute software on Resources within its
control. The DomainManager tells the ResourceManager what resources to use, and the
ResourceManager load and executes the proper software on the given hardware resources. A
ResourceManager upon startup may create a Logger, FileManagers, FileSystem, and other Resources
based on the direction of the DomainManager using the Domain Profile.

2.2.5.1.2.2.1 ResourceManager Relationships
Below is a list of Relationships that the ResourceManager component has with other Framework
Components in the system.

<Uses> FileSystem – To load and unload software resource files

<Uses> DomainManager – To register itself or register or unregister a device.

<Uses> Logger – To log warnings or information, and alarm conditions

The relationships for this interface are shown in the ResourceManager Relationships in figure 2.2-21.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-44

DeviceList

DeviceType
classID : ClassID_Type
element : DeviceNumType
deviceID : DeviceID_Type

DevicePropertiesType
device : DeviceType
properties : Properties

Properties

uses

Figure 2.2-21. ResourceManager Relationships

2.2.5.1.2.2.2 ResourceManager Interfaces
Following is the list of Interfaces for the ResourceManager Framework Component for managing the
plug and play capabilities of the JTRS radio.

interface ResourceManager {
The terminate operation terminates the execution of the function on the device the Resource Manager is
managing.

boolean terminate(in ProcessID_Type processId);

ResourceManager

terminate(processId : in ProcessID_Type) : boolean
fileManager() : FileManager
logger() : Logger
deviceProperties(device : in DeviceType) : Properties
deviceExists(device : in DeviceType) : unsigned long
list() : DeviceList
execute(functionName : in string, parameters : in StringSequence) : ProcessID_Type
load(fileSystem : in FileSystem, fileName : in string) : boolean
unload(fileName : in string) : boolean

<<Interface>>

FileSystem
<<Interface>>

Logger
<<Interface>> ProcessID_Type

FileManager
<<Interface>> StringSequence Properties DeviceList

uses

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-45

The fileManager operation returns the file manager associated with this ResourceManager.

FileManager fileManager();
The logger operation returns the logger associated with this ResourceManager.

Logger logger();
The deviceProperties capability returns the properties for the specified device. If the specified device
does not exist, a null Properties set is returned.

Properties deviceProperties(in DeviceType device);
The deviceExists operation returns the number of registered devices based upon the input type.

unsigned long deviceExists(in DeviceType device);
The DeviceList operation provides a list of the hardware devices along with their properties that are
currently associated with this ResourceManager object.

DeviceList list();
The execute operation executes the given function name using the arguments that have been passed in and
returns an ID of the process that has been created.

ProcessID_Type execute(in string functionName, in StringSequence parameters);

FileManager fileManager();
The logger operation returns the logger associated with this ResourceManager.

Logger logger();

The deviceProperties capability returns the properties for the specified device. If the specified device
does not exist, a null Properties set is returned.

Properties deviceProperties(in DeviceType device);
The deviceExists operation returns the number of registered devices based upon the input type.

unsigned long deviceExists(in DeviceType device);

The DeviceList operation provides a list of the hardware devices along with their properties that are
currently associated with this ResourceManager object.

DeviceList list();
The execute operation executes the given function name using the arguments that have been passed in and
returns an ID of the process that has been created.

ProcessID_Type execute(in string functionName, in StringSequence parameters);
The load operation loads a file based on the given fileName using the input FileSystem to retrieve it. True
is returned if the load was successful, otherwise False is returned.

boolean load(in FileSystem fileSystem, in string fileName);
The unload operation unloads software based on the fileName and returns a success or failure status.

boolean unload(in string fileName);

};

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-46

2.2.5.1.3 Framework Services Interfaces

2.2.5.1.3.1 File
The File interface provides the basic primitive interfaces for accessing any non-collocated file within the
JTRS. This interface may be extended for specific application files types.

2.2.5.1.3.1.1 File Relationships
Below is a list of Relationships that the File component has with other Framework Components in the
system.

<uses> Message Interface

The definition of the File interface captured in Rational Rose using UML notation is as shown in figure
2.2-22.

File
fi leName : str ing

read(dat a : out Message:: MessageBuffe r, length : in unsigned long) : unsigned long
writ e(data : in M essage :: Mess ageBuffer, length : in unsigned long) : unsigned long
s izeOf() : unsigned long

<<Interface>>

Message
<<Interface>>

Figure 2.2-22. File Relationships

2.2.5.1.3.1.2 File Interfaces

interface File {

This attribute provides read access to the fully qualified name of the file.

readonly attribute string fileName;
The read operation reads data from the file. The read operation returns a True value if the read was
successful, otherwise False is returned.

unsigned long read(out Message::MessageBuffer data, in unsigned long length);

The write operation writes data to the file. The write operation returns a True value if the write was
successful, otherwise False is returned.

unsigned long write(in Message::MessageBuffer data, in unsigned long length);

The sizeOf operation returns the current size of the file.

unsigned long sizeOf();

 };

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-47

2.2.5.1.3.2 FileSystem

The FileSystem interface provides basic OS file system operations to access non-collocated files within
the JTRS. The interface also provides the capability for accessing non-collocated FileSystems within the
JTRS. The JTRS may use one to many (1…*) FileSystems as depicted in figure 2.2-23.

FileFileFile

Processor 1

FileSystem

FileFileFile

Processor 2

FileSystem

FileFileFile

Processor 3

File SystemFileSystem

Figure 2.2-23. Conceptual FileSystem Relationships

2.2.5.1.3.2.1 FileSystem Relationships
Below is a list of the relationships that the FileSystem component has with other JCF components in the
system.

<uses> File – to open, .delete, and create a file.
<uses> Logger – to log information.
The definition of the FileSystem interface captured in Rational Rose using UML notation is as shown in
figure 2.2-24.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-48

File
<<Interface>>

FileSystem

remove(fi leName : in string) : boolean
copy(sourceFileName : in string , destinationFileName : in string, destinationFileSystem : in FileSys tem) : boolean
exists(fileName : in string) : boo lean
list(name : in st ring, argv : in string, argc : in short) : StringSequence
load(fileName : in string) : boolean
create(fileName : in string, size : in unsigned long) : File
open(fileName : in string) : File
close(fileName : in string) : boolean
unload(fileName : in string) : boolean

<<Interface>>

StringSequence

uses

Figure 2.2-24. FileSystem Relationships

2.2.5.1.3.2.2 FileSystem Interfaces

interface FileSystem {
The remove operation removes the file with the given name from the file system. The name includes the
full path of the file. The operation returns true on success, false on fail.

boolean remove(in string fileName);

The copy operation copies the source file with the specified name to the destination FileSystem. The
copy operation returns true on success, false on fail.

boolean copy(in string sourceFileName, in string destinationFileName, in FileSystem
destinationFileSystem);

The exists operation checks to see if a file exists based the file name parameter and returns true if found,
false otherwise. The file name should include the path where to search for the file.

boolean exists(in string fileName);

The list operation behaves similar to the UNIX “ls” command.

StringSequence list(in string name, in string argv, in short argc);
The load operation loads a file based on the file Name and returns a success or failure status. The load
allows a file in the file system to be loaded into RAM without having to open a file and read the file to
load the file into RAM.

boolean load(in string fileName);
The create operation creates a new File based upon the input file name. The size is used to determine if
the file system has enough space for creating the new file and to verify the file size when closing the file.
A null file object reference is returned if the name already exists or size is too large for file system.

File create(in string fileName, in unsigned long size);

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-49

The open operation opens a File based upon the input file name. A null File object reference is returned if
name does not exist in the file system.

File open(in string fileName);

The close operation releases a File object that has been created and registered with the ORB. A True
value is returned upon successful file close, otherwise False is returned.

boolean close(in string fileName);

The unload operation unloads a file based on the fileName and returns a success or failure status. The
unload operation unloads the software from RAM.

boolean unload(in string fileName);

};

2.2.5.1.3.3 FileManager

The JCF includes the FileManager interface for common access to non-collocated Files and FileSystems.
The FileManager organizes FileSystems within the JTRS, and makes the various FileSystems available to
any Resource in the system. The FileManager is accessible to non-core application resources as well as
JCF Resources to locate the various FileSystems within the JTRS. The FileManager is the top-level
access to all the files in the system. Files may be located anywhere within the architecture. Files may be
in found in memory, hard-drive space, flash, or other means of storage. The generic FileManager
interface will allow for multiple FileSystems to be mapped and located using the FileManager interface.

Figure 2.2-25 shows a FileManager on Processor 2 which provides access to FileSystem 1 on Processor 1
and to the local FileSystem 2 on its own processor. The second FileManager on Processor 3 provides
access to the local FileSystem 3, and FileSystem 2 on Processor 2. Both FileManagers have access to the
Processor 2 FileSystem even though the processors may be of different type or architecture.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-50

FileFileFile

Processor 1

FileFileFile

FileManager

Processor 2

FileFileFile

FileManager

Processor 3

File SystemFileSystemFileSystemFileSystem

Figure 2.2-25. File Management

2.2.5.1.3.3.1 FileManager Relationships
The definition of the FileManager interface, captured in Rational Rose using UML notation, is as shown
in figure 2.2-26.

<uses> FileSystem – to access and list files in the system
<uses> Logger – to log information.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-51

FileManager

list() : Properties
map(fileSystemName : in string, fileSystem : in FileSystem) : boolean
unmap(fileSystemName : in string) : boolean
find(name : in string) : StringSequence
open(name : in string) : File

<<Interface>>

FileSystem
<<Interface>> PropertiesStringSequence

File
<<Interface>>

Figure 2.2-26. FileManager Relationships

2.2.5.1.3.3.2 FileManager Interfaces
Below is the list of FileManager interfaces for managing the FileSystems of the JTRS.

interface FileManager {
The list operation returns a list for FileSystem object references.

Properties list();
The map operation registers a FileSystem object with the File Manager object. True is returned if the
mapping was successful; otherwise false is returned.

boolean map(in string fileSystemName, in FileSystem fileSystem);
The unmap operation removes FileSystem reference from a File Manager object.

boolean unmap(in string fileSystemName);
The find operation returns list of Files that are found based upon the input criteria.

StringSequence find(in string name);

File open(in string name);

 };

2.2.5.1.3.4 Installer
The Installer interface defines a standard mechanism in the JTRS for loading, initializing, and reporting
the properties of software Resources in the system. The Installer interface provides the DomainManager
with information about the software Resources by populating the Domain Profile. Software Resources in
the JTRS are persistent assets, and remain as usable Resources until deleted from the system. Similar to
the ResourceManager, the Installer will provide information to the Domain Profile, and by combining
both software and hardware resource information, the DomainManager is able to determine allocation of
resources.

The Installer will provide a common interface allowing both HCI and OTAP components the capability
of installing and uninstalling software Resources within the JTRS.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-52

The Administrator’s ability to access the Installer service is verified prior to the Installer being invoked.
This provides for secure management of the software.

The Installer provides the software Resource properties and requirements to the DomainManager through
the population of the Domain Profile. The Resource requirements consist of the definition of the
necessary hardware and software for the operation of the installed software Resource. The software
properties consist of information needed by the DomainManager about the installed modules such as:

• Their location in the File System

• Software version identification

• Timestamp

• Size

• Security level.

This information is used to allocate the software Resources when a user Functional Application is
requested.

2.2.5.1.3.5 Logger
The Logger interface is used to capture alarm, warning, and informational messages during the execution
of software within the radio. A Logger object interfaces with two other types of objects:

• Message Producers – Objects in the system which send messages to be logged by the Logger.

• Message Consumers - Objects in the system which register with the Logger to receive logged
messages of particular log levels.

The Logger interface provides operations for both Message Producers and Message Consumers.

The Logger uses Log Levels to determine the severity of a message being logged by a Message Producer.
Log Levels range in value from LEVEL_14 (alarm) to LEVEL_0 (purely informational) and are provided
by Message Producers to the Logger along with the message to be logged. The Logger determines if any
Message Consumers are registered to receive messages at the level provided by the Message Producer
and will pass on the message and Log Level to the appropriate Message Consumer(s).

The Logger also provides the ability:

• To display the last n number (where n is defined by the user) of logged messages to the system
console.

• To enable and disable the logging of messages to a file.

• For Message Consumers to filter the types of messages which they are receiving.

2.2.5.1.3.5.1 Logger Relationships

The definition of the Logger interface, captured in Rational Rose using UML notation, is as shown in
figure 2.2-27.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-53

Logger

logData(producerName : in s tring, messageString : in string, logLevel : in unsigned short) : void
setLoggingState(enable : in boolean) : void
setProducerLogLevel(producerName : in string, logLevel : in unsigned short) : void
setConsumerLogLevel(consumerName : in string, producerName : in s tring, logLevel : in unsigned short) : void
displayLast(number : in unsigned short) : void
registerConsumer(consumerName : in string, consumerMessage : in Message, logLevel : in unsigned short) : void
unregisterConsumer(consumerName : in string) : void
showProducerLogLevels() : void
showConsumerLogLevels(consumerName : in string) : void
enableFileLogging(filename : in string, fileSystem : in FileSystem) : void
disableFileLogging() : void
retrieveLogFile() : File

<<Interface>>

FileSystem
<<Interface>>

Message
<<Interface>>

File
<<Interface>>

Figure 2.2-27. Logger Relationships

2.2.5.1.3.5.2 Logger Interfaces
The IDL for the Logger interface produced from the Rational Rose diagram in figure 2.2-27 is shown
below:

interface Logger {
The logData operation logs a log string and a time stamp to the console depending on the current log level
set for the producer object and the log level of the string. It also logs the same information to a file if file
logging is enabled for the object. The operation also pushes the data to registered consumers based upon
their log levels. The logger log level is automatically assigned to a new producer.

oneway void logData(in string producerName,

in string messageString,
in unsigned short logLevel);

This operation enables the logging of all messages at the currently set level for each object, or disables the
logging of all messages from all objects, depending on the value of the argument.

void setLoggingState(in boolean enable);

This operation sets the log level for a producer object. All incoming log strings <= to the currently set
level are displayed/saved. The log level is bitmapped 00 00 - 7F FF (hex) with bit 16 being a control bit
to allow for log level manipulation.

Examples:

LogLevel = C010 h (1100 0000 0001 0000 b) indicates only levels 14 and 4 are to be displayed.

LogLevel = 000A h indicates levels 10 and below will be displayed, and bits 4-14 are unused.

void setProducerLogLevel(in string producerName,
in unsigned short logLevel);

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-54

This operation sets the log level for a consumer object. All incoming log strings <= to the currently set
level are displayed/saved. The log level is bitmapped 00 00 - 7F FF (hex) with bit 16 being a control bit
to allow for log level manipulation.

Examples:

LogLevel = C010 h (1100 0000 0001 0000 b) indicates only levels 14 and 4 are to be displayed.

LogLevel = 000A h indicates levels 10 and below will be displayed, and bits 4-14 are unused.

void setConsumerLogLevel(in string consumerName,
in string producerName,
in unsigned short logLevel);

This operation displays at the console the last number of log messages stored locally within the logger.

void displayLast(in unsigned short number);

This operation registers a consumer object with the logger. Initially all producers’ messages that pass the
input logLevel are pushed to the consumer. A consumer can change its filtering by the
setConsumerLogLevel operation.

void registerConsumer(in string consumerName,

in Message consumerMessage,
in unsigned short logLevel);
This operation unregisters a consumer object.

void unregisterConsumer(in string consumerName);
This operation displays the current log level for all producer objects.

void showProducerLogLevels();
This operation displays the current log levels for a consumer object.

void showConsumerLogLevels(in string consumerName);
This operation stores to disk the incoming log based on the current log level. It does not affect output to
the console.

void enableFileLogging(in string filename,

in FileSystem fileSystem);

This operation disables storage to disk of the incoming log based on the current debug level.

void disableFileLogging();
This operation retrieves the current log file.

File retrieveLogFile();

 };

2.2.5.1.3.6 Timer
The JCF Timer service provides operations for synchronizing time within the radio as well as for creating
and managing time-based events.

The Timer service is made up of two interfaces, a Time Service interface and a Timer Event Service
interface.

The Time Service interface manages the following two types of objects:

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-55

• Universal Time Objects (UTO)

• Time Interval Objects (TIO)
The UTOs are used to represent a time and the TIOs are used to represent a time interval. The Time
Service interface provides operations for creating UTOs or TIOs, as well as operations to create TIOs
based upon UTOs and vice versa. The Time Service also provides operations for returning the current
time and manipulating time formats.

The Timer Event Service manages Timer Event Handler objects. To use this service, the CORBA Event
Service is used to create an Event Channel. The Timer Event Handler then registers the Event Channel
for use. The Timer Event Handler is then used to set up a Timer Event as needed using an UTO.

The JCF Timer service is based on the CORBA Time Service. Concerns about the real-time nature of
current COTS implementations of the CORBA Time Service may preclude its use, however. That being
the case, it is recommended that the JCF Timer service implement the CORBA Time Service. Ultimately,
COTS implementations of the CORBA Time Service may replace the JCF Timer service implementation
if deemed acceptable.

2.2.5.1.4 Optional Framework Interfaces

2.2.5.1.4.1 Factory
The Factory interface defines a generic interface that can be implemented by any Factory Resource
within the radio. Each Factory object creates a specific type of Resource within the radio. The Factory
interface provides a one-step solution for creating a Resource, reducing the overhead of starting up
Resources. The Factory interface is similar to the COM Factory class and is based on the industry-
accepted Factory design pattern3. In CORBA, there are two separate object reference counts, one for the
client side and one for the server side. The Factory keeps a server-side reference count of the number of
clients that have requested the resource. When a client is done with a resource, the client releases the
client resource reference and calls releaseResource to the Factory. When the server-side reference goes
to zero, the server resource object is released from the ORB that causes the resource to be destroyed.

2.2.5.1.4.1.1 Factory Relationships

The definition of the Factory interface, captured in Rational Rose using UML notation, is as shown in
figure 2.2-28.

3 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-56

Factory

createResource(resourceNumber : in ResourceNumType, qualifiers : in DataType) : Object
releaseResource(resourceNumber : in ResourceNumType) : boolean
shutdown() : boolean

<<Interface>>

DataType
id : unsigned long
value : any

ResourceNumType

Figure 2.2-28. Factory Relationships

2.2.5.1.4.1.2 Factory Interfaces
The IDL for the Factory interface produced from the Rational Rose diagram in figure 2.2-28 is shown
below:

interface Factory {
The createResource operation returns a resource based upon the input resource number and qualifiers. If
the resource does not already exist, then this operation creates the resource, else the operation returns the
object already created for that resource number.

Object createResource(in ResourceNumType resourceNumber, in DataType qualifiers);
This operation removes the resource from the Factory if no other clients are using the resource. The
resource to be released is associated with a specific resource number.

boolean releaseResource(in ResourceNumType resourceNumber);
This operation destroys all resources managed by this factory and terminates the factory object.

boolean shutdown();

};

2.2.5.1.4.2 Agents

The JTRS Software Architecture is easily extended to support non-CORBA-capable processing elements
through the use of Agents. Agents are inserted into the architecture to provide the translation between
non-CORBA-capable Resources and CORBA-capable Resources. Since an Agent implements the JCF
CORBA interfaces known to other CORBA-capable Resources, the translation service performed by the
Agent is transparent to the CORBA-capable Resources. Agents become particularly useful to support
non-CORBA-capable Modem, INFOSEC, and Host processing elements. Figure 2.2-29 depicts an
example of message reception flow through the JTRS with and without the use of Agents. Modem,
INFOSEC, and Host Agents implement the interfaces marked by the circled letters M, I, and H
respectively. Notice that the Waveform Link and Waveform Network Resources are unaffected by the
inclusion or exclusion of the Agents. The interface to these Resources remains the same in either case.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-57

Host
Agent

RF

Non-CORBA
Host

CORBA
Host

Waveform
Network

Waveform
Link

Non-CORBA
Modem

CORBA
Modem

I

I

I

IM

M

Non-CORBA
Infosec

(2) (3) (4) (5)

(1)

(1)

(2)

(3) (4)

(5) (6)

(7) (8)

(9)

OTA Message Reception Path (with Agents)
 (1) from RF physical link API
 (2) API for non-CORBA Modem
 (3) CORBA Interface to Waveform Link
 (4) CORBA Interface to Infosec Agent
 (5) API for non-CORBA Infosec
 (6) API for non-CORBA Infosec
 (7) CORBA Interface to Waveform Network
 (8) CORBA Interface to Host Agent
 (9) API for non-CORBA Host

OTA Message Reception Path (without Agents)
 (1) from RF physical link API
 (2) CORBA Interface to Waveform Link
 (3) CORBA Interface to Infosec
 (4) CORBA Interface to Waveform Network
 (5) CORBA Interface to Host

M

I

I

JTRSJTRSHost (User) Host (User)

Note: The design goal of a CORBA gateway “Agent” is to
define the CORBA side of the gateway such that the eventual
removal of the Agent does not change the JTRS Core Frame-
work CORBA interface.

CORBA
Infosec

Modem
Agent

Infosec
Agent

Infosec
Agent

H

H

H

M
I

I
H

JTRS Core Framework (JCF)

Commercial Off-the-Shelf (COTS)

JTRS and/or Legacy Applications

Figure 2.2-29. Example Message Flows with and without Agents

2.2.6 Software Development Environment Recommendations

This section discusses the Software Development Environment, Documentation, and Configuration
Management for the Step 2 development of the JTRS Architecture.

2.2.6.1 Software Development Environment
The software development environment for Step 2 will be compatible (and preferably identical) for each
participant. The least risk approach will be to use identical COTS software and hardware, development
environments and configuration management tools. The current options under consideration are
(preferences are not implied by order):

Software Option 1 Option 2 Option 3

POSIX Operating System LynxOS VxWorks Linux

CORBA v2.2 ORB HARDPack Visigenics OrbExpress
Integrated Development
Environment

LynxOS Tornado Cyngus

Configuration Management ClearCase w/Multi-Site Continuus w/Multi-
Site

PVCS w/Multi-Site

UML Modeling Tool Rational Rose 98i ILogix Rhapsody Artisan
Simulation Tool ObjecTime ILogix Rhapsody Mil3 OpNet

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-58

2.2.6.2 Software Development Process

The documentation developed for the Step 2 JCF will include a Software Development Plan (SDP) and,
for Core and Non-Core Objects:

• Software Requirement Specification (SRS)

• Interface Design Document (IDD) i.e., annotated UML and IDL model

• Software Design Document (SDD) i.e., annotated UML and IDL model

The level of annotation will be defined in the Software Development Plan.

These documents will be precise and concise, with technical content taking precedent over format. These
documents will reference documents that already exist in industry, instead of reproducing them.

2.2.6.3 Peer Reviews
Informal peer reviews will also be conducted for both documents and code. The objective of these
reviews is to emphasize the technical content. All developers will have visibility into what is taking place
in this concurrent development.

2.2.6.4 Software Configuration Management Recommendations

In general, participants involved in the development of the JRTS software will not be co-located.
Software configuration management tools and source code libraries will need to work in a multi-site
development environment. This multi-site development environment will need to keep the source code
libraries in sync across the country but still allow participants the ability to check-out, modify, test, and
check in software modules. These duplicate source code libraries are necessary to speed local builds.

The configuration management tools will support multiple views of the source code libraries. This means
that a developer can check out a module, make modifications, and build to those changes without
affecting the local or remote development groups. Once tested, the module can be promoted to the local
group view in order to be seen by other local developers. As modifications are tested and approved at the
local level, they can be promoted to the remote development views. This allows for multiple and
concurrent development of the JCF and waveform applications in a controlled environment.

As the JCF matures, a baseline will be established on all or portions of the development. After this
baseline has occurred, there will be a need to control the change process of the baseline Core Objects, so
that the interfaces that all objects depend on do not change without review by a configuration control
board. This is especially important on the JCF Base Classes like StateManagement, Message, and
MessageRegistration.

2.2.7 MLS Migration Recommendations

The JTRS Software Architecture is flexible enough to include the ability to integrate and leverage
emerging security technologies. The System High (SH) aspects of the Software Architecture will
minimize efforts to transition from SH to MILS, and eventually to MLS. In order to minimize the
transition efforts from SH to MILS, the following approach is recommended:

• Early development of an Access Control Policy as part of the JTRS Step 2 program

• Early development of a Key Management Plan as part of the JTRS Step 2 program

• An Operating System that supports hardware Memory Management Units (MMUs)

• Processor or module architectures that incorporate hardware MMUs

• Partner with a COTS OS developer to develop a trusted OS

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-59

• Partner with a COTS ORB developer to develop a CORBA Security Service and a
Secure POA.

MILS allows the passing of data at multiple levels of classification through the red side at the same time
without mixing the two (or more) data streams, i.e. message traffic with different classification levels is
destined for separate processor modules. The software recommendations necessary to achieve MILS are:

• Support for programmable INFOSEC Devices (already inherent to the software
architecture)

• Use of trusted software applications for critical security functions

• Insertion of the COTS trusted OS

• Software development that supports incremental functionality of security requirements.
Some of this functionality will need to support:

♦ Data tagging for authentication, routing and system checking.
♦ Digital Signatures.
♦ Software protection tools.
♦ Incorporation of the CORBA v2.2 Security Specification and Secure POA

MLS allows the passing of data at multiple levels of classification through the Red Side at the same time
in a mixed data stream, i.e. messages of different classification levels are destined for the same processor.

2.2.8 Compliance Recommendations
Submittal of the JTRS architecture to the SDR Forum will be made concurrent with the submittal of the
Step 1 report. Submittal of JTRS architecture to the OMG (domain-level specification) will be made
concurrent with the Step 2 validation of the architecture. The OMG is the standards body that would then
make the JTRS architecture an open standard in the form of a CORBAfacility specification.
Implementations of the architecture could then be validated against the OMG specification for
compliance. This would encourage an open, industry- accepted compliance methodology.

2.2.9 Summary of Technical Advantages
The JTRS Software Architecture that has many significant technical advantages. These include:

1. An open software architecture definition that has evolved from prior government and
industry definitions, including the technical activities of the PMCS and the SDRF.

2. A JTA-compliant software architecture definition that is built upon the commercial
standards of the OMG including UML, IDL, and CORBA.

3. A detailed software architecture definition that promotes understanding by the third-party
developers and readiness for validation.

4. A commercial software architecture definition that maximizes the use of COTS products.

5. A flexible software architecture definition that provides application reuse and application
portability between domains.

6. A distributed, object-oriented software architecture definition that promotes distribution of
software objects between processing elements.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-60

Conceptual Model of JTRS
Software Architecture

DomainManager

FileManager

ResourceManager

Factory

HW Device

Access

Link

registers with
1..*

oversees
1

accesses SW
files via

1
knows what SW
is available via

1..*

Creates static core &
dynamic non-core 1..*

has
access

to 0..*

1

instantiates
1..*

1

1

requests
resources of

1..*

1

ModemAgent

provides

StateManagementMessageRegistrationMessage

are types

Guides start-up &
tear-down states of

Sets up virtual path
destinations via 1..*

File stores & retrieves
0..*

bases allowable
configuration on

1..*

are types
of

Executable
SW

Domain
Profile

1

1 1

Modem Network UtilityRF

HostAgent

AudioSerialEthernetGPSModem GPLRF Key FillCrypto

InfosecAgent

Infosec

application

decrypts CT
for 1..*

sends
PT to

1

decrypts PT
for 1..*

1 sends
CT to

1..*

controls1

acts on
C2 for

Bridge Router

externally
connects

1..*
routes
to/from1..*

bridges
to/from 1..*

translates
protocols for

1

1
1

1translates
protocols for

1..* intercepts
CT to/from

1

111

1
implements

Modem API for

1 1

RF
API

analog

1..*

acts on
BB / IF /

complex for 1..*

1acts on
A/D, D/A

for

1
implements

Infosec API for

1
intercepts

PT to/from

Signal Gen.
/Antenna

of JTRS

Resource

FileSystem
0..*

1..* JTRS Core Framework (JCF)

Commercial Off-the-Shelf (COTS)

JTRS and/or Legacy Applications

1

resources

1..*1..*

HW Device

provides
services for

1

1..*

Waveform
provides

services for

provides access to

provides
access to

1 1 1
1

1

1..*

1..*

controls
1..*

1

Gateway

Repeater

retransmits
signals of1

1

Figure 2.2-30. The JTRS Software Architecture

2.2.10 JCF IDL
The JCF interfaces are expressed in CORBA IDL. The IDL is generated directly by the Rational Rose
software model. This “forward engineering” approach ensures that the IDL accurately reflects the
architecture definition as contained in the model. The IDL is then compiled using the INPRISE and
Highlander Communications VisiBroker IDL Compiler hosted on Sun Solaris. All of the interfaces are
contained in the JCF CORBA module as depicted in figure 2.2-31.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-61

Factory

Resource
Manager Resource

File

FileSystem

Logger

FileManager

Domain
Manager

JCF

Mes sage
Regis tration

Message

State
Managemen

Figure 2.2-31. JCF CORBA module

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-62

2.3 DEPLOYMENT VIEW

2.3.1 Introduction
This section presents the JTRS Hardware Architecture, introducing hardware “classes” and describes how
the architecture can be implemented in various domains. This is accomplished by drawing example
Deployment views for the domains. (“Deployment” is used, as opposed to “Hardware”, to reflect the
constraints and environments of the domains/platforms as well as the physical requirements of JTRS
itself.) The rationale used for the views will be presented along with platform-specific considerations.

2.3.2 Hardware Architecture

2.3.2.1 Basic Approach
The definition of the JTRS HW Architecture consists of HW classes that are common across all
Deployment views and a rule set for applying the classes to physical objects. HW classes can be further
decomposed into subclasses and eventually into HW objects, which are the elementary building blocks of
an actual radio. This object-oriented approach enables a consistent application of the HW architecture
(classes and rules) across the various domains (i.e., Handheld, Dismounted, Vehicular, Airborne, and
Maritime/Fixed).

2.3.2.2 Hardware Classes, Attributes and Inheritance
The identification of the JTRS hardware classes and objects is based on the physical (i.e., “touchable”)
elements of the system as opposed to the functional elements of the PMCS model. The rationale for this
approach is that it has the benefit of producing classes of elements sharing common physical and interface
attributes (e.g., red processor and black processor).

Hardware objects are physical implementations that are specified by quantifying the physical attributes
inherited from their class. In this sense, the attributes are the parameters that define domain-neutral
hardware objects, and the values of the attributes specify requirements for a selected implementation.
From each common-attribute class, objects will be implemented in hardware to satisfy the JTRS
procurement-specific requirements.

2.3.2.3 Hardware Architecture – Classes
This approach has yielded the class structure depicted in figure 2.3-1. Two categories of classes were
selected because the Chassis Super Class has unique physical, interface, platform power and external
environment attributes that are not shared with the modules in the chassis. The Module Super Class
encompasses a greater variety of physical hardware with all classes below it inheriting its attributes,
including those shown in figure 2.3-2.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-63

JTRS Hardware

Chassis
Super Class

HW Module(s)
Super Class

Attributes
• Power
• Form Factor
• Environmental Interfaces
• Platform Interfaces

1-2.3

Attributes
• Form Factor
• Chassis Interface Type
• Chassis Environmental
 Requirements

Attributes
 • Maintainability
 • Availability

Figure 2.3-1. Top Level Hardware Class Structure

JTRS HW Module
Super-Class

Attributes
• Form Factor
• Chassis Interface
• Chassis Internal Environmental

Requirements

RF
Class

Attributes
• # Rx /Tx Channels
• Performance

Parameters

Attributes
• # channels
• uP/FPGA Capability
• Memory

• Memory Size & Type

Modem
Class

Processor
Class

Attributes
• uP Capability
• Memory & Type

GPS
Class

Attributes
• # Channels
• Mil or Com

INFOSEC
Class

Attributes
• # & Type of Channels
• Engine
• Key Management

I/O
Class

 Attributes
• Buses
• Discretes

Power Supply
Class

CSI
Class

Frequency
Standard Class

Attributes
• Capacity
• Voltage/Current
• Output Performance

Attributes
• Accuracy
• Stability
• # Fanouts

Attributes
• Backplane/Bus
• Number of Slots

2-2.3

Figure 2.3-2. Hardware Module Class Structure

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-64

The Chassis super-class provides top-level attributes such as power, form factor, platform, and
environmental interfaces. It serves as the interface between the environment/platform and the modules.
The Module(s) class serves as the environmental/interface to the chassis. The modules share (in general)
form factor, critical system interconnect (CSI), power, and environment.

The Module Super-class can then be further decomposed into classes that mirror the PMCS reference
model entities. The module super-class, as shown in figure 2.3-2, consists of the following nine classes:
RF, Modem, Processor, INFOSEC, I/O, Power Supply, Global Positioning System (GPS), Frequency
Standard and CSI. These classes will be the parents of all the hardware objects that will comprise a JTRS
radio. A partial listing of attributes that the respective HW objects will inherit is also shown for each
class. The classes provide an organized method for HW definition down to the physical aspects (i.e.,
objects) of the JTRS.

The nine classes in figure 2.3-2 are grouped according to attributes and interfaces that the objects in each
class inherit. Physical partitioning of legacy radios and the PMCS Functional Entity Model, shown for
reference in figure 2.3-3, also influenced the class structure (i.e., “real-world” experience in implementing
JTRS functionality in hardware, and the effort to generate the PMCS guidelines were leveraged into the
architecture definition process). The nine classes differ from the PMCS model, as some PMCS functional
entities are combined in the JTRS hardware architecture and other module classes have been added. The
rationale for this partitioning is the object-oriented process used to define the hardware architecture,
which stresses inheritance of attributes and physical implementation rather than functional allocation.
The benefits of this approach are realized in commonality of design elements and implementation of
reusable hardware objects, which enhance JTRS openness and affordability. Additional details on the
specific hardware classes are provided in the following paragraphs.

The RF, Modem, CSI, and INFOSEC Classes map directly to the PMCS functional entity reference
model. This is because distinct physical hardware objects in these classes historically are required to
perform the functions described in the PMCS guidelines. The hardware objects to accomplish these
functions are often specialized and unique from the rest of the hardware architecture, but can be applied
across the domains.

The Processor Class consists of the hardware that maps to the PMCS black-side processes,
internetworking, and system control (red-side processes) functional entities. The rationale for this class
organization is a common set of attributes (processors, memory, and logic) that bind these entities
together from a hardware perspective. This common Processor class benefits the system architecture by
grouping like hardware elements into a single class to maximize commonality and address hardware
extendibility and scalability issues in a common, rather than piecemeal fashion. Significant benefit to the
JTRS in terms of openness, commonality within and across domains, and affordability are anticipated as
the result of this partitioning. When the hardware is coupled with software to perform specific control,
routing, or networking functions, the PMCS functional partitioning is applicable.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-65

Network Interface (FEI)

(FEI)(FEI) (FEI)(FEI)

HCI

(FEI)(FEI)(FEI)

Antenna I/O
Interface

(FEI)(FEI)

RF

User Interface (FEI)

(INFOSEC Considerations Apply)

* Optional System Control Entity That Also Supports COTS
Products (e.g. Cellular, GPS, etc.

FEI - Functional Entity Interface

System
Control
(Red)

User Interface (FEI)

Inter-
 Networking

Black
Side

Processes
*

 INFOSEC

Critical System Interconnect
Black

MODEM

Critical System Interconnect
Red

3-2.3

Figure 2.3-3. PMCS Reference Model

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-66

The I/O Class corresponds to the PMCS HCI functional entity. The naming convention expresses that the
I/O Class is not limited to just the user interface.

Three classes (Power Supply, GPS, and Frequency Standard) have been identified as being unique to the
JTRS hardware architecture, because the objects they encompass lack any common attributes for
grouping. In addition, they have been implemented as physically distinct objects that can be separable in
order to leverage Commercial / Government Off The Shelf (COTS/GOTS) solutions and reduce cost. The
unique attributes inherited by objects of these classes are also depicted in figure 2.3-2.

This JTRS Architecture is expandable such that additional capabilities not specifically included in these
classes can be accommodated at future times. As objects for one of the above classes or as a new class
under one of the super classes, they will inherit the attributes and interfaces of their parent class and bring
their own unique attributes.

2.3.2.4 Hardware Architecture - Rules
The rule set that applies to JTRS Hardware is based on the criteria identified in the SOO and in the Step 1
Study solicitation, namely:

• promoting the use of common hardware.

• leveraging industry’s investment in technology.

• being affordable.

• easing technology insertion by promoting technology independence.

• being open and documented.

• encouraging industry acceptance as a commercial standard.

• being scaleable.
The rule set is delineated in 2.1.1.3 and is repeated here:

Form Factor – The form factor for modules in a JTRS instantiation shall be:

• selected from open, commercial standards (wide usage, available from multiple vendors,
and expected to have long-term support).

• chosen to maximize reuse across domains.

• chosen to optimize the serviceability of the internal chassis installation.

• chosen for compatibility with the chassis/platform environment, e.g., efficiently utilize
the volume defined by the chassis and/or platform.

• compatible with the available environment control facilities provided by the platform.
Interface – The interfaces for modules in a JTRS instantiation shall be:

• selected from open, commercial standards (wide usage, available from multiple vendors,
and expected to have long-term support).

• chosen to maximize reuse across domains.

• supported by a POSIX-compliant operating systems.
Environment – The environmental performance of modules in a JTRS instantiation shall be:

• compatible with the needs of the platform.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-67

• optimized for reuse across domains.

• defined to maximize the use of commercial products.
The use of the rule set is intended to provide a framework for decision making and implementation
relative to the critical aspects of the hardware. A set of standards can be derived from the rule set; use of
the standards for implementation is a factor in determining compliance to the architecture. It is important
to understand that the freedom allowed by the architecture and rule set does not diminish the value of the
architecture. The CSI class may be implemented as a VME backplane in one procurement and as a cPCI
backplane in another. The two procurements may even be for the same domain and the value of the
architecture is not diminished. The procurement cycle and the ability of the Government to demand best
value from contractors will ensure that if any cost advantage of a common object definition is not taken,
there is a greater offset applied and the Government achieves the greater value. A significant
improvement in performance offered by a new or different technology would be impeded by an
architecture definition frozen at one option of today’s capabilities.

2.3.2.5 Domain Criteria

As tactical terminals migrate toward a multi-band, multi-channel and multi-mission architecture, a
dilemma arises. When trying to satisfy the needs of both the small, highly-mobile, tactical user and the
large, mobile or fixed command center within each domain, it is evident that distinctly different mission
and platform constraints exist. Offering the same weight, cost, size, transmit/receive channel
functionality, and COTS/NDI solution for both extremes is not the optimum – nor cost effective –
solution for either. The highly-mobile tactical user requires a compact, environmentally-robust terminal
containing embedded message processing, sized sufficiently to his needs, but not so large as to meet the
intensive filtering/formatting/networking needs of the command post. The command post, on the other
hand, requires environmental robustness only to the inhabited level. There are many real barriers to
complete commonality - cost being the largest. The most significant hardware cost-savings potential is
the use of COTS standards, technology, and components, where possible. The JTRS Architecture
presented here provides the standard for use of COTS technology, design reuse across products, and an
open, well-documented architecture that multiple contractors can follow to implement an entire system or
a portion of it.

2.3.2.5.1 Cosite Considerations.

The inclusion of multiple channels in the JTRS radio introduces cosite interference considerations within
the radio as well as at the platform level. The JTRS Architecture must support control interfaces to an
antenna distribution unit (ADU) or other device(s) that provide external cosite mitigation. It also must
support internal cosite mitigation capabilities. These capabilities are in the RF Modem, and I/O classes of
the architecture.

2.3.2.5.2 Timing Considerations
Timing analysis is critical to successful implementation of any architecture and so must be considered
during the architecture definition process to ensure there are no architectural timing barriers. Timing
analysis completed for the examples in this report are representative of the broader effort required to
verify specific implementations of the architecture. Appendix D contains the analyses performed for this
step of the process.

2.3.3 Example Views

Five deployment views are presented, showing how ORD requirements can be met by implementing the
above Hardware Architecture. Each represents one example of multiple possibilities, using today’s
technology. In several instances, assumptions have been made about the capability of specific modules to
illustrate the implementation of the architecture. These assumptions, however, do not necessarily imply
that such a component currently exists.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-68

2.3.3.1 Maritime/Fixed Station Deployment Example View

At one end of the spectrum of JTRS needs is the relatively large, fixed, and mobile command center.
These command posts have both narrow-band and wide-band communications connectivity and require
high bandwidth to handle imagery and video to augment present-day capabilities. Their mission is both
short and long-term tactical. They serve as Situation Awareness disseminators and provide C3 to
battlefield commanders in the theatre. The data communications load is large and the number of
workstation operators naturally increases as the command center fuses data from multi-sources and multi-
bands, while directing a multitude of forces. An example of the JTRS solution for this need is an
extension of the Digital Modular Radio (DMR). The following addresses the ORD threshold 4-channel
requirements for this domain and discusses ways the solution can be expanded to the objective 10-channel
capability.

2.3.3.1.1 Maritime/Fixed Station Overview
Using the JTRS Architecture and based on present-day technology, the Maritime/Fixed Station Domain
(M/F) JTRS can be implemented as follows. The unit could be a 19-inch rack-mountable, multi-band,
multi-channel transceiver with a separate 19-inch rack-mountable RF Power Amplifier (PA) for each
transmit channel. The M/F JTRS provides interoperability with legacy systems, scalability to support
growth, and extendibility to meet new requirements. The JTRS requirement and the goal to maximize use
of COTS/NDI hardware and software were significant factors in the implementation. The CSI functional
entity provides an open system standard for mechanical and electrical interfaces that were evaluated for
application in the M/F JTRS. Table 2.3-I summarizes the criteria used in the selection of a 19-inch rack-
mountable chassis (JTRS ORD threshold requirement), a 6U module size, and a VMEbus common
module electrical interface. [Note that the approaches and benefits shown in this table generally apply to
all example views in this report, with the exception of the adoption of alternate industry standard busses,
etc. The table will not be repeated in each of the remaining views to be discussed.] The IEEE-1014 and
IEC-821 electrical and mechanical VMEbus standards are widely accepted in both military and
commercial applications and fulfill the intent of the rule set. They enhance interchangeability, maximize
the availability of COTS products, and simplify the inclusion of third-party NDI products. Additional
factors favoring a standard like VMEbus are that they are evolving (e.g., VME64 (80 MBps) and
VME320 (320 MBps)) while maintaining backward compatibility with VME modules. The higher
bandwidths ensure the continued popularity and acceptance of the VME standards as user demands
increase.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-69

Table 2.3-I. Maritime/Fixed Station Architecture Features

JTRS Need/Objective M/F JTRS Example Approach Benefits

Use of COTS/NDI
products in an open
system architecture

• Industry standard VMEbus and
object-oriented software
architecture

• Industry standard interfaces
• Open hardware and software

architecture

• Readily-available COTS modules
• Readily-available NDI modules
• Readily-available legacy system software

modules
• Simplifies insertion of third-party

products
Scaleable • Reserve hardware slots and

multi-tasking software
architecture

• Configure minimum hardware for initial
requirements, scale for growth
requirements

Modular • Logical hardware and software
functions partitioning

• Simplifies insertion of new hardware or
software upgrades

Extendible • RF connectors/cables support
0-15 GHz frequency range

• Internal/external frequency
control words support
>15 GHz

• Extra RF interfaces

• Critical RF interfaces and control can
support SHF operation

• Spare RF connectors support any new
multi-antenna processing capabilities

• Rapid insertion of new commercial
communications technology

Software
Re-configurable

• Multi-channel, multi-band,
dynamically re-configurable

• Minimum hardware required to meet
varying mission needs

Interfaces • Extra RF and LAN connectors
• Processor and DSP modules

that support “personality”
mezzanine modules

• External RF switches and
couplers

• Re-configurable for different interfaces
to meet specific mission needs

• Easily incorporate networking to reduce
external cables

• Easily incorporate extra RF input for
diversity or omni-directional receive
functions

Programmable
INFOSEC with Black-
side interface to legacy
crypto equipment

• INFOSEC module using
CORNFIELD or AIM crypto
device and integral Tempest
shielding

• Black-side interfaces to be
provided

• Single-point key fill

• Independent Red I/O on module provides
MLS capability

• Flexible INFOSEC integration

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-70

The M/F JTRS hardware architecture design focuses on maximum use of COTS/NDI hardware and
software modules to provide a functionally modular architecture compliant with the ORD and the DMR
procurement specification. Figure 2.3-4 shows the hardware module configuration for a typical 4-channel
M/F JTRS.

Freq
Std.

Power
Amplifier

(PA)

Receiver/

Exciter
(R/E)

Blk
I/O

Black
Proc

INFOSEC
Red
I/O

GPS
Rcvr

Blk Red

Quad
Modem

Red
Proc

8-2.3

RF

Power
Supply

Power
Supply

Figure 2.3-4. Maritime / Fixed Station JTRS Example

The hardware objects are color-coded to reflect the classes defined in the architecture. The hardware RF
function, for instance, resides in the PA modules and the Receiver/Exciter (R/E) modules. The RF class
mates with legacy and future antennas, multi-couplers and matching networks such as the advanced
Submarine Antenna Distribution System (SADS) and the advanced, integrated antenna system of the
Multifunction Electromagnetic Radiating System (MERS). The I/O class interfaces to a JMCOMS
Operator Station for control and status. The M/F chassis has separate Red and Black CSI VMEbus
backplanes with room for 4 red-side modules and 12 black-side modules, including spares. The M/F CSI
provides the digital data I/O bandwidth required for a software radio. The VMEbus backplane provides a
40 Mbps inter-module bus I/O transfer rate. External RF connectors interface with current coax RF
distribution systems. An external interface adapter can be added for future upgrade to fiber-optic RF and
data transmission. Multiple analog, digital, and LAN interfaces are provided for user I/O and control
signals.

There are two spare black-side slots and one spare red-side slot in the basic 4-channel M/F configuration.
This reserve capacity permits M/F scaleable and/or extendible upgrades, e.g., additional RF channel,
diversity reception capability for High Data Rate (HDR) links, additional INFOSEC. A total of 12
external RF connectors provide reserve capability to accommodate future RF modules with more than two
RF connections per module. Two reserve black-side LAN interfaces allow the M/F to access future
networked Tactical Data Processors (TDPs), or other black-side terminals and future networked
equipment. Programmable INFOSEC modules, providing multi-level security, can be added. Multiple
red-side LAN interfaces are available for red-side control, DAMA Orderwire, and future data distribution.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-71

2.3.3.1.2 Hardware Modules Mechanical Design

The “below deck” environmental conditions of the M/F domain conforms with the Industrial grade of
commercial devices. This allows an operational temperature range of -40 to +55C. Shock and vibration
requirements are satisfied by isolators built into the chassis.

Functional partitioning of the M/F hardware architecture is consistent with the PMCS reference model.
The M/F core functional entities are realized using 6U-VME hardware modules. The 19-inch rack-
mountable chassis with its shock-isolated card cage provides a modular, versatile design that can be
adapted to support maritime and fixed station environments. The M/F JTRS can be functionally tailored
or expanded to meet specific applications by the deletion or addition of plug-in modules, including a
fiber-optic bus connection.

2.3.3.1.3 RF Modules

The M/F JTRS operates in the RF spectrum from 2 MHz to 2GHz on multiple full-duplex and half-duplex
modes. Each R/E module provides a full-duplex, receiver-exciter function in the 6U VME size. The RF
section is comprised of four cards that support the four-channel configuration resident in the isolated card
cage. The four-channel radio has two spare black slots for expansion. The R/E modules plug into
connectors mounted on the VME chassis and route the IF from the top of the RF module to the Modem
module using flexible RF cables.

The M/F JTRS provides twelve RS-422 serial interfaces for control/status of legacy RF equipment and
one LAN interface for control to and status from the Power Amplifiers (PAs). There is one spare AUX
control/status connector. LAN interface adapters can be used to provide M/F control of additional RF
equipment.

The M/F RF approach uses current technology that meets the requirements in a cost-effective, scalable,
and low-risk manner. M/F JTRS provides HF/VHF/UHF legacy operation and HDR operation to 2 GHz.
The R/E modules permit operation with any legacy or commercial waveform at any frequency within
their bandwidth.

2.3.3.1.4 Modem
The M/F modem comprises two COTS quad-Digital Signal Processor (DSP) circuit cards, each with a
mezzanine card that configures the card as either a modulator or a demodulator. The VMEbus provides
the interfaces for system control functions, prime power, and timing. All waveforms, modes, and
characteristics provided by the modem can be reconfigured by the System Control Entity. Each DSP is
independent of the others and can be individually configured for any of the specified M/F modes. The
modem has the capability to choose from among 30 waveforms stored in flash memory.

2.3.3.1.5 Black-Side Processor

Architecture openness and flexibility in M/F black-side processes are obtained by using COTS single
board computers (SBCs) compliant with open standard interfaces such as VME and PCI Mezzanine Cards
(PMC) (IEEE 1386.1). Not only can third-party VME modules be installed, but the personality of the
SBC module can be changed by adding PMCs. PMCs can be used to provide additional I/O ports,
network interfaces, or increased capability.

Many factors were evaluated in selection of a COTS SBC for the M/F black-side processes. Because
requirements for black-side processes are similar to those on the red-side, a similar processor was
dictated. This SBC has more than 100 % processing and memory reserve under worst-case M/F operating
scenarios.

2.3.3.1.6 INFOSEC
The M/F JTRS INFOSEC is a flexible design that provides three distinct security related functions: User
data and voice encryption/decryption, Orderwire encryption/decryption, and TRANSEC

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-72

generation/reception. The reprogrammable INFOSEC design allows the INFOSEC requirements for the
M/F JTRS to be incrementally upgraded as improved or new COMSEC algorithms become available.
The architecture also allows for any COMSEC module, such as the CORNFIELD or Advanced INFOSEC
Module (AIM), to be embedded on a VME form factor, plugged into the appropriate card slot, loaded
with interface software, and operated in the new modes.

The system provides DS-101/102 Red/Black Key Fill and Benign (Protected) Key Fill. The system can
be re-keyed by two means: Direct Fill through a Data Transfer Device (DTD) (CYZ-10), KYK-13, KOI-
18, KYX-15, or by OTAR (Over-the-Air-Re-key).

2.3.3.1.7 Red-Side Processor
The critical sub-functions of Inter-networking and Red Host networking are accomplished on an industry-
standard COTS SBC identical to the Black Processor. Additional network interfaces such as ATM are
accommodated through the insertion of COTS PMC or VME modules and COTS software drivers
ensuring M/F’s extendibility.

The critical sub-functions of system control are accomplished using programmable control and monitor
objects distributed throughout the M/F JTRS with centralized control residing in the Red Processor.
Software control and monitor objects reside on all microprocessor-controlled hardware modules in the
M/F JTRS. Where programmable software is not feasible on a module, control and monitoring are
accomplished using both hardware on-line fault monitors and neighboring microprocessor-controlled
modules. This category of hardware includes Power Supplies, PAs, the Frequency Standard, and
Receiver/Exciter.

2.3.3.1.8 Input/Output
The M/F JTRS external interfaces consist of the RF, Analog, and Digital I/O ports. All external interface
connectors are on the back of the chassis with the exception of INFOSEC fill connectors that are on the
front panel. Additional expansion interface connectors are also located on the back of the chassis. These
connectors permit legacy and growth capabilities to be installed in the M/F without hardware
modifications.

The M/F JTRS Local Area Network (LAN) Ethernet control interface conforms to IEEE 802.3. This
interface is implemented using a SNMP. The M/F is capable of using the Advanced Digital Network
System (ADNS), Information Network Manager (INM), and the Joint (UHF) Military Satellite
Communications (MILSATCOM) Network Integrated (JMINI) Resource Controller and M/F operator
stations. The M/F JTRS provides one Black and two Red LAN interfaces and spare LAN connectors for
growth.

Black user data is transferred between the Black SBC and the Digital I/O modules via the Black VME P1
bus. Each COTS Digital I/O module provides buffering and serial to parallel conversion for 16 serial data
streams. With two Digital I/O cards, the Baseline M/F provides 32 independent serial digital channels to
accommodate 8 user ports for each of 4 DAMA channels.

2.3.3.1.9 Red and Black Power Supplies
The Red and Black Power Supplies (PS) contain a holdup circuit that allows the M/F to meet a 100 ms
power dropout requirement. The holdup technique uses energy stored in capacitors at the output of the
Power Factor Corrector circuit. The Power Factor Corrector provides voltage regulation, transient
reduction, and harmonic reduction per MIL-STD-1399.

2.3.3.1.10 Frequency Standard

The Frequency Standard module distributes a high-accuracy reference frequency to modules on the VME
P2 connector. A master clock on the black-side processor module is initialized at power-up and maintains
a reference time relative to start-up. An absolute reference time is obtained by synchronizing to a Time-

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-73

of-Day (TOD) input from either the internal GPS function or an external TOD source. Time reference
pulses are transmitted on the VME P2 connector from the master clock to any module function requiring
timing input for software/hardware synchronization, such as network TDMA frame timing or TRANSEC
frequency hopping control.

2.3.3.2 Maritime/Fixed Station Scaleablility
Because the basic M/F JTRS chassis has room for expansion (growth slots), it can readily grow to a 5-
channel terminal with the addition of one R/E module and one Modem module. Beyond the need of a 5-
channel M/F JTRS, multiple radios may be stacked in a 19” rack to provide anywhere from 8 to 128
channels. This provides an ideal re-use of equipment and flexibility to accommodate channel scaling.
Each chassis is interconnected via a high-speed Ethernet or Fibre Channel to provide a single operator
with a virtual multi-channel M/F JTRS. For example, a 10-channel M/F JTRS would consist of two, 5-
channel chassis simultaneously controlled via LAN by a single Operator Station, as shown in figure 2.3-5.
Each 4-channel JTRS would mate with legacy or future RF, audio, data, and INFOSEC devices with
control and status coordinated through a single JMCOMS terminal.

Ethernet or Fibre Channel 5-2.3

4-Channel
M/F JTRS

4-Channel
M/F JTRS

4-Channel
M/F JTRS

. . . .

Figure 2.3-5. Increasing the Channel Capacity of the M/F JTRS

2.3.4 AIRBORNE DEPLOYMENT Example View
The airborne deployment view is complex due to the varied existing US military airborne platforms, the
differences of their operational duties, the variety of environments presented by the different platforms,
and required different functional capabilities. This domain could be split into subdomains based on form-
factor of existing equipment (for retrofit considerations), severity of physical environment, and the
expected cosite environment.

The operational temperatures for various platforms within the airborne domain ranges from the jet
fighter/helicopter requirement of -55 to +71C to the less severe (-40 to +55C) requirements of the
transport or command post. As differing attributes within the hardware class, the objects or instantiations
will differ according to the sub-domain requirements; the difference is evident at both extremes of the
temperature range. At the low end, a -40C operating range requires industrial commercial components,
whereas a -55C operating temperature requires military or screened parts, or other considerations to
accommodate the requirement. When the JTRS is placed in an inhabited cabin aboard an airborne
transport or command post, the upper temperature range is limited to +55C. Operation in an inhabited
cabin allows the JTRS to be easily cooled with airflow. For the jet fighter, the possibility of exposure to
the corrosive atmosphere of JP4 fuel and continuous exposure to high altitudes, forced-air cooling is less
attractive. For a helicopter with the potential build-up of sand and dust, conduction cooling of SEM-E
form-factor, militarized COTS may be a preferred solution.

For the large platforms, using the JTRS Architecture for the threshold ¾ ATR Long chassis limit
operating in a fairly benign airborne inhabited environment (-40 to +55 degrees C, low-level vibration)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-74

could yield the following solution. For the small, highly mobile platforms, there could be a subset of the
command post instantiation consisting of GPS receiver and three to four communication channels. Many
of these platforms are limited to two or at most three communications antennas (one bottom, one top, one
perhaps tail mounted) due to physical space, flight dynamics, and cosite considerations. Envisioned here
is the objective ½ ATR chassis operating in the more stringent environmental (-54 to +71 degrees C with
potential dash conditions to +95, class 2 vibration, 95% humidity, etc.).

One RF port is envisioned for each channel (possibly two for full-duplex operations, again depending on
antenna configuration and the desirability of external RF combining hardware). Forced-air cooling will
be required in some domains, especially in the harsher small, highly mobile environment. A 3 dB or less
Noise Figure is required for SATCOM receivers, which can be accommodated by the architecture within
the basic radio or with the typical external Low Noise Amplifier (LNA).

The antenna distribution unit (ADU) (outside the radio) would contain such things as frequency agile
filters, high power amplifiers, interference cancellation systems, switch matrices for flexibility, LNAs, HF
couplers, adaptive nulling and/or polarization diversity for future antenna systems.

Using the JTRS Architecture, the example Deployment View in figure 2.3-6 shows the threshold
configuration of six channels. The view shows the hardware objects needed to accomplish the
communication scenario. The platform RF interface with up to 6 pairs of receiving and transmitting
antennas, depending on the desired frequency coverage for the installation, whether full duplex
communications are desired, and the size of the aircraft. The platform baseband and control interface will
consist of a minimum of 2 audio channels (both transmit and receive audio), two wideband digital data
outputs, two LAN connections, and two control buses (one similar to MIL-STD-1553B and another local
legacy controller bus such as RS-232, RS-422, or RS-485). Based on the rule set, all interfaces are taken
from industry or Government standards, with the exception of the audio channels.

For retrofit applications, the audio interfaces need to be adaptable across the wide variety of existing
airborne communication systems. This, too, is within the rule set. Other unique retrofit interfaces (e.g.,
power, antennas, and ADUs) fit within only three Hardware classes – RF, I/O and Chassis and the
implementation would be tailored for the platform. In this way, integration costs of putting JTRS into
existing airborne platforms is minimized.

2.3.4.1 Chassis
The chassis hardware object has a set of attributes that determine the overall size, platform interface,
physical environment, power, mounting, security, etc. The attributes are used to derive some of the
attributes for the hardware objects (modules). The size of the modules are derived from the chassis size
and the number of hardware objects needed by the architecture. In this instance, a 3U package size is
envisioned; the environmental conditions actually specified for the procurement will determine if COTS
circuit boards can be used or if ruggedization is required. Forced air cooling may be necessary to meet
the altitude and temperature attributes. The bus used for interconnection in the transport/command post
environment will be selected from COTS busses (e.g., VME, cPCI). To arrive at the final object
attributes, it will probably take several iterations at the derivation process.

An additional attribute of the chassis is physical security. The JTRS will have a zeroize switch on the
chassis which will cause all COMSEC and TRANSEC variables in the unit to be erased. Likewise, there
will be an anti-tamper switch on the INFOSEC module which causes all COMSEC variables to be erased
whenever the chassis is opened.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-75

GPS

 I/O

Discretes
& Buses

Frequency
Standard

Modem

RCVR/XCTR

INFOSEC

Power
(Red)

Power
(Black)

Proc
(Black)

Proc
(Red)

6-2.3

Figure 2.3-6. Example Airborne Deployment View

2.3.4.2 RF
The Rcvr/Xctr module is the hardware object of the RF class. Each Rcvr/Xctr module will be full duplex
and cover the frequency range from 2 MHz to 2000 MHz.

The receiver output will be at an IF analog frequency and be routed to the Modem. The input frequency
range will probably be broken into three bands, 2 to 100 MHz, 100 to 1000 MHz, and 1000 to 2000 MHz.
The object will consist of the input amplification, mixing, gain, and filtering.

The exciter will require an IF input from the Modem. It will have about a 100 mW output level and be
separated into two bands, 2 to 1000 MHz and 1000 to 2000 MHz. The module will have on-board
frequency synthesis, which will also be the source for the processor clocks.

External PAs will also be band separated, based on the power requirements for the waveforms that are to
be supported.

2.3.4.3 Modem

The modem is a wideband, full duplex dual-channel object with an IF output to the exciter portion of the
RX/TX and accepts an IF input from that module. It has the A/D and a D/A converters necessary to
convert between digital data and the analog communication signals. The modem will use DSPs for the
modulation and demodulation and programmable FPGAs for filtering functions. There will be on-board
memory available for processing 10 waveforms.

2.3.4.4 Processor
The power of two processors on the black side and two on the red side will likely be required using
today’s general purpose processors; while that may change in the near future, the redundancy offered may
lead to the decision to keep that many. A timing/sizing study would be required to ensure adequate
processing and memory margin with the selected objects.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-76

2.3.4.5 INFOSEC

The INFOSEC module will be a four channel multi-programmable module and, for this example, will be
made up of a 4 channel Cornfield device. This will form a bridge between the red and black sides. In
order to handle the extra channels, a second INFOSEC module will be added. This provides 8 channels
for a potential 12 channel need. It is not likely that all six RF channels will be operating in a full duplex
mode. A traffic analysis would be required to validate this configuration or determine if a third
INFOSEC module is needed.

The INFOSEC module attributes for the airborne deployment view vary with the number and type of
channels in each hardware example. However, some generic requirements based on a command post
usage would be two to three each KY-58 and ANDVT encrypted paths, a KGR-96, two KGV-11, and one
KGV-10 path. The INFOSEC module would be required to be programmable such that each
communication path is operated on with the proper encryption algorithm. Key management is another
function handled by the INFOSEC module.

The INFOSEC module will have the anti-tamper switch, activated by opening the chassis, which will
zeroize the COMSEC and TRANSEC variables.

2.3.4.6 I/O
This module will contain the audio buffers and amplifiers (interfaces for transmit and receive audio), the
wideband data output, and a control bus such as MIL-STD-1553B.

I/O module attributes depend upon the quantity and type of legacy cryptographic and intercommunication
system (ICS) requirements used by each platform. A MIL-STD-1553B bus is typically used for primary
control of the radio. RS-422, RS-232, or RS-485 may be used for a backup remote control interface. The
I/O must also have the capability to interface with a cosite frequency management processor. The
interfaces must also include transmit keyline for each channel.

2.3.4.7 Frequency Standard
This standard will determine the timing and frequency accuracy of the system. The frequency standard
for the airborne deployment view is expected to be internal to the JTRS with accuracy better than 0.1 ppm
(required by several waveforms) with the ability to fan out to all internal users.

2.3.4.8 GPS

The GPS module will have 6 channels to work the military encrypted data. An option to keep cost down
would be mounting the circuit card(s) from a high-volume-use ground-based GPS unit, using thermal
dissipation and shock isolating mounting provisions to compensate for the more extreme environment.

2.3.4.9 Power
Two power supplies will be used, one for the red side of the radio and the other for the black side. The
supplies will work with either 110 Vac 400 Hz or +28 Vdc inputs and be of the switching regulator type
running at frequencies as high as 1 MHz. This will make the ripple filtering less complex, requiring
smaller components to achieve a quiet bus for the sensitive modules.

Power module attributes also are platform implementation dependent. Input power characteristics (type
and capacity, as well as filtering / suppression standards), output voltage and current performance
(including ripple, transient, and surge handling capability) are all to be defined in the implementation
phase.

2.3.4.10 CSI
The common interconnect element is typically the circuit card backplane within a modular open
architecture design. It will consist of the primary bus structure (such as cPCI signals), power supply
buses, architecture specific signals such as reference clocks, and user/slot specific I/O based on the

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-77

specific radio modes. The RF signals will be routed using coaxial cables. The backplane will be
scaleable to allow for growth in number of slots.

The CSI is separated into Red and Black sections. Shielding and decoupling will be used to prevent
unacceptable levels of cross-coupling between the Red and Black busses. The shielding will be done by
using shield planes on the motherboard and by separating the traces from any proximity to each other.

2.3.5 Vehicular Deployment Example View

The Vehicular Domain deployment view encompasses the JTRS radio mounted in mobile platforms. This
domain’s requirements also include a variety of platforms. The vehicular domain encompasses highly
mobile users, requiring the five channel threshold radio requirements, and the mobile command post with
the eight channel objective radio requirements.

The use of COTS hardware is expected to fulfill the Global Positioning System (GPS), commercially
developed Cellular telephony Processor, I/O, Frequency Source, and Power Supply hardware needs. At
the present time the RF, Modem, and INFOSEC hardware objects are envisioned to be non-COTS. This
does not preclude the use of COTS hardware when it becomes available.

The example Vehicular Deployment view, as shown in figure 2.3-7, is representative of a five channel
JTRS radio. The vehicular JTRS radio is capable of supporting a mix of full- and half-duplex channels,
plus a GPS receiver. The mobile platforms demand a lightweight, small size, environmentally robust
terminal solution.

The view shown in figure 2.3-7 has five full duplex Receiver/Transmitters (Rx/Tx) with approximately 4
Watts output power. Complementing them are three dual-channel Modem modules (2 full-duplex
channels/module), and two dual 4-channel INFOSEC module. Current technology will permit the
implementation of this terminal, with a considerable challenge to meet the power, size, and thermal
constraints of the subdomain.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-78

CSI CSI

Rx/Tx

7-2.3

Red Side
Processor

I/O
Dual

4-channel
INFOSEC

Black Side
Processor

Dual
Modem

PA

Red
Power
Supply

Black
Power
Supply

Frequency
Source GPS

Figure 2.3-7. Example Vehicular Deployment

2.3.5.1 Vehicular Deployment Form Factor and Scalability

Implementation of the example Vehicular deployment view is consistent with the JTRS hardware
architecture. The vehicular core objects are envisioned as hardware modules, using a 3U form-factor.
The modules are installed into a shock-isolated card cage. The modules will be conduction-cooled to
meet the environment of existing vehicular platforms. The vehicular JTRS terminal can be functionally
tailored to meet specific deployment applications by the deletion or addition of plug-in modules.

The basic objects for the JTRS Vehicular radio are a single-channel-Rx/Tx module, a dual-channel-
Modem module, a Processor, a dual 4-channel INFOSEC module, a Frequency Source module, a GPS
module, a Black Power Supply, a Red Power Supply, and an I/O personality module. By invoking four
instances of the T/R module, three instances of the Modem module, 2 instances of the Processor and
INFOSEC modules and one of each of the others, the view in figure 2.3-7 is realized.

Using the rationale in the bullet list below, an eight-channel vehicular deployment is best implemented
using two of the example building blocks. This configuration has additional benefits that are not
immediately apparent. The transition from the example configuration to an eight-channel configuration
does not impact the Black or Red processing functions or the module interconnect bus (i.e., cPCI). Each
block is a self-contained entity and can provide communication link redundancy, in the event of a failure
internal to a radio. As technology advances, higher levels of integration become possible, and processor
throughput increases, each building block may grow and become 8-channel blocks. This is envisioned as
a simple module replacement in the existing chassis. The limiting factor for expansion then becomes the

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-79

bandwidth of the backplane interconnect bus. The cPCI backplane bus, for example, will accept this
growth when the need arises.

• An additional dual 4-channel INFOSEC module will be required for increased radio
capability.

• Additional Rx/Tx and Modem modules will require additional Power Supply capability.
2.3.5.2 RF Modules
Each Rx/Tx module provides independent receiver and transmitter functions in a 3U, cPCI form-factor,
conduction-cooled module. The vehicular deployment will interface to high-powered amplifiers (HPAs),
external to the chassis, if required. The vehicular JTRS radio will support interfaces to legacy HPAs to
minimize platform integration costs.

2.3.5.3 Modem

Each Modem module provides two full-duplex modulator/demodulator functions in a 3U, cPCI-
compliant, conduction-cooled module. The modem functions will be distributed on a carrier card and two
plug-in mezzanine cards; some recurring savings can be realized by using two fully populated modules
and one module with only a single mezzanine card to provide the five required channels. Alternately, all
three could have the two-channel capability, providing the capability, with switching, for a redundant
modem path.

2.3.5.4 Black-Side Processor
The vehicular black-side processor is partitioned based on the JTRS hardware architecture and critical
functions and interfaces are allocated to software and hardware. All non-time-critical and non-physical
functions were allocated to software. By implementing almost all black-side functions in software, future
capabilities and/or modifications to existing capabilities are easily incorporated into the vehicular JTRS
through software upgrades. Architecture openness and flexibility in the vehicular black-side processor
are shown by using a COTS SBC. Not only can third party modules be installed, but adding PMC cards
can change the functionality of the module. PMC cards can be utilized to provide additional I/O ports,
network interfaces, or increased capability.

2.3.5.5 Red-Side Processor
The same SBC would be used for the Red-Side Processor.

2.3.5.6 INFOSEC

Each INFOSEC module provides an eight-path INFOSEC capability in a 3U, cPCI-compliant,
conduction-cooled module. The module would contain two Cornfield programmable INFOSEC chips,
each on a separate plug-in mezzanine card, as well as control and signal routing circuitry and the Key Fill
processor. As with the Modem, the five-channel version of this radio could realize recurring savings by
having a single mezzanine card in one of the INFOSEC modules. The Three Cornfield chips provide a
total of twelve paths against the maximum ten-path requirement for this example.

2.3.5.7 Input/Output

The vehicular JTRS terminal I/O module provides the primary Human Computer Interface (HCI) to the
terminal. It provides for user control, display, and audio. Front panel connectors and controls provide
access to primary power control, crypto key fill, and an alphanumeric display for BIT. The external
signal interfaces consist of the RF, Analog, and Digital I/O ports. All external interface connectors are on
the back of the chassis with the exception of INFOSEC fill-connectors, located on the front panel.
Additional expansion interface connectors are also located on the back of the chassis. These connectors

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-80

permit legacy and growth capabilities to be installed in the vehicular terminal hardware with minimal
modifications. The vehicular JTRS terminal I/O also includes a LAN Ethernet interface.

2.3.5.8 Red and Black Power Supplies

The vehicular Red and Black Power Supply modules are envisioned as a 3U compliant, double-width,
conduction-cooled modules. The vehicular Red and Black Power Supplies contain a holdup circuit that
allows the vehicular terminal to meet a 100 ms power dropout requirement.

2.3.6 Dismounted Warfighter Deployment Example View
The dismounted JTRS subdomain is a ground-based manpack or wearable radio. This radio must survive
the field environment using battery powered and providing two to four channels of communication using
the various waveforms detailed in the ORD. The deployment view of the dismounted warfighter radio for
this example includes two channels in addition to the GPS receiver. The simultaneous operation of the
channels can vary from both receiving, to one transmitting and one receiving, to both transmitting. The
view is for a radio designed to be carried on the warfighter’s back with a volume of less than 400 cubic
inches (threshold) including battery and ancillaries. To be compatible with being carried, the radio
weighs less than 13 lb. The environment includes immersion, drop, and a temperature range from -40 to
+71 C, which allows for solar heating.

One RF port is envisioned for each channel, the channels are full-duplex, with a +12 Vdc battery required
for power. Cooling will be accomplished by natural convection with external fins used to enhance this.
A 3 dB or less receive Noise Figure is required for SATCOM operation. The antenna is envisioned
mounted directly to the radio to aid a low noise figure and minimize transmit power loss. The antenna
itself will be a composite of multiple elements to cover the entire spectrum required for the resident
waveforms. The GPS antenna is separate and shaped as a conformable patch.

The Dismounted Warfighter View may be described by a set of distinct objects. Each object is defined
according to its general functionality. The example JTRS Dismounted Warfighter view is presented in
figure 2.3-8. This view depicts the individual objects populating the radio. It also shows how all these
objects are tied together, emphasizing the role of the Black-side and Red-side buses in segregating the
two levels of processing.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-81

Analog
Baseband

I/O

Analog
Baseband

I/O

Single
Board

Computer

Crypto
Board

(2
channels)

INFOSEC
Analog/

Baseband
I/O

Single
Board

Computer

GPS
Module

FPGA
(2

channels)

Processor
(2

channels)

Receiver/
Transmitter

Frequency
Standard

Power
Module

Black Small PCI bus Red Small PCI bus

Chassis Interface Structure

Red Side
Processor

INFOSECBlack Side
ProcessorModem

Front
Panel

Control
and

Display

9-3.2

Figure 2.3-8. Dismounted Warfighter Example View

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-82

2.3.6.1 Receiver/Exciter

This module translates received signals from RF to IF and transmit signals from IF to RF. Proper filtering
and downconversion (or upconversion) are performed on an incoming (or outgoing) signal in accordance
with the tuned frequency, waveform type, signal bandwidth and other parameters. Each of the two
Receiver/Exciter (Rcvr/Xctr) modules populating the chassis is capable of handling a single
communications channel.

2.3.6.2 Modem
The Modem modulates (when transmitting) or demodulates (when receiving) the signal utilizing DSPs
and downloaded software-based algorithms to perform its (de)modulation function according to the
waveform type currently assigned. The Modem contains DSPs and waveform FPGAs and supports
simultaneous processing of two signal channels.

2.3.6.3 GPS
A GPS receiver is part of this radio to permit the Dismounted warfighter to establish their absolute
position at any time. The positioning information is presented on the unit’s LCD display.

2.3.6.4 Processor

Processors provide the control capability for both Black-side and Red-side processing. Separate SBCs are
used for the Black- and Red-side processors. While the SBCs are not COTS modules, the exclusive use
of COTS standards and interfaces allow the radio to take advantage of current technology and be
upgraded with minimum impact as commercial technology improves.

2.3.6.5 INFOSEC

This module provides the INFOSEC functions for the supported waveforms. This module contains
control processors and a programmable INFOSEC chip, as well as the Key Fill processor and circuitry.

2.3.6.6 I/O

The Front Panel Control and Display Module is a primary point of I/O for this class of radio. The Front
Panel Control and Display Module provides direct control of the various elements of the front panel,
including keypad, display, and controls, under direction of the Red Side Processor. The radio also
contains an Analog/Baseband I/O Modules for audio and data interfaces. Each module may be specific to
the interface or peripheral object which it supports. Two I/O Modules can be used in this radio.

2.3.6.7 Frequency Standard
The radio contains a temperature compensated frequency oscillator (TCXO) to provide accurate timing
and frequency control for the supported waveforms.

2.3.6.8 Power Supply and Battery
The radio is battery-powered with a power regulator to buffer the voltage and to provide voltage
conversion as necessary for the other modules.

2.3.6.9 CSI

The CSI for this radio includes a bus backplane and inter-module RF cabling.

2.3.7 Handheld Deployment Example View
The JTRS Handheld Deployment View is considerably different from the object views for the other
domains. The primary reasons for the differences are the unique size/weight envelope and power
constraints of the handheld portion of the ground domain. The threshold requirements of a single channel
radio are addressed in this example. For illustration purposes, the view assumes the single channel radio
uses the SINCGARS or EPLRS waveforms with a commercial GPS receiver.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-83

The handheld domain requires extremely small size and weight (at least as small as existing handhelds
and 1-3 pounds). Very low power operation is the third primary driver of the JTRS handheld architecture.
Fortunately, the size constraints also favor low power operation.

The handheld unit must operate from batteries that must be carried by the warfighter. Increased battery
weight forces reductions in food and ammunition. To obtain satisfactory battery life in a handheld radio
work must focus on low power design, taking full advantage of evolving technology in both the military
and commercial sectors.

The example JTRS Handheld deployment view is shown in figure 2.3-9.

2.3.7.1 Architectural Impacts, Potential Approaches and Rationale
As illustrated in figure 2.3-9, the handheld radio is based on a hybrid open system and parallel highly
integrated commercial solutions. The implementation will rely heavily upon efficient power use and
power management techniques, such as those described herein, to successfully meet the requirements of
the JTRS ORD.

The handheld JTRS is battery operated. Some internal battery capability is required to back up memory.
The main power source is likely to be an external battery (i.e., the current Special Forces battery is belt
mounted). The radio will incorporate a DC/DC converter that allows operation over a wide range of
external voltages. A voltage range of +6 to +32 volts may be appropriate.

Power
Supply

Frequency
Standard

I/O Radio

Black

Red

Cell
phone

RF Data

RF RF

Modem Modem

INFOSEC INFOSEC
GPS

RF Data

INFOSEC

INFOSEC

Red
Processor

Red
Processor

Black
Processor

Black
Processor

CSI

CSI

4-2.3

Battery

Figure 2.3-9. Example Handheld Deployment View

The form factor of the handheld unit suggests that a single whip communications antenna be used. This
provides vertical polarization, and is optimum for ground to ground links. Some version of the handheld
JTRS will require multi-channel operation. This can be achieved by connecting the single
communications antenna to a (frequency domain) multiplexer. This multiplexer can provide separate
ports for SINCGARS and VHF-FM (33 - 99 MHz), VHF-FM Public Service (136-174 MHz), UHF-FM
Public Service (403-512 MHz), etc. While this may not seem as flexible as a 2 to 2000 MHz transmitter
and receiver, it does solve interference problems between waveforms. It also allows the use of waveform-
specific transmitters that are more power efficient than a single broadband transmitter. As the efficiency

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-84

and bandwidth of RF components increase with technological developments, this will become less of an
issue.

Organic transmit power will be limited in the vicinity of 5 watts with current technology. Increased
transmitter power will lead to unacceptable battery life. The handheld JTRS should also provide an RF
interface that will allow use of an external antenna. This may be useful when operating the handheld
JTRS inside a vehicle.

In the handheld, JTRS waveforms would be ideally handled using a reprogrammable software approach
compliant with the JOE. The major problem is doing this in a power efficient manner. The processing
requirements for the waveforms (MIPS, memory, etc.) are essentially fixed, so the only way to save
power is to use more efficient processors, ASICs, and gate arrays. The handheld JTRS will have to be a
technology leader in applying state of the art components to the JTRS architecture to meet the power
requirements. This may mean porting a reduced set of the JOE (similar to “scaled-down” version of
Windows for the Palm Top Computer) to new, more efficient processors as they become available. Power
management issues, sleep modes, and possibly variable clock rates will also have to be looked at
carefully. Power management must also be considered when considering multi-hop communications.

Several of the handheld JTRS waveforms require cryptography. SINCGARS uses KGV-10 for
TRANSEC, KY-57/58 for COMSEC (VOICE and SDM Data), and KYV-5 for EDM Data; while
EPLRS uses KGV-13. This crypto capability must be provided in the handheld JTRS. Existing point
solutions for cryptography are inconsistent with the size and weight requirements of the handheld JTRS.
Power and size constraints suggest that small, multi-channel crypto devices be used. The JTRS
community needs to take the lead in defining the technology improvements required for this area.

Some of the JTRS waveforms require an accurate frequency standard (on the order of +/-1 ppm). The
handheld JTRS derives frequency and time from the GPS downlink, in conjunction with a TCXO.
Commercial GPS chipsets are already in production with this capability.

The cell phone and GPS waveforms are of great commercial interest and it is unlikely that the
government/military contractors can keep ahead of the technology being developed in the commercial
sector. The commercial semiconductor suppliers are developing point solutions for these waveforms that
are low cost, power efficient, and compact. It should be noted that an ASIC can always be more power
efficient than a general purpose processor. The most effective way for the handheld JTRS to provide
these waveforms is to leverage commercial chipsets. Commercial cellular telephone waveforms are
rapidly evolving. In North America, systems have progressed from the analog AMPS, to the IS-95 digital
CDMA (code-division multiple access), to the new Personal Communication System (PCS) standards.
Europe is presently using the Global System for Mobile communication (GSM) and DCS-1800 digital
standards, and is currently developing the Third Generation (3G) waveform that will support both voice
and data. The commercial demand for a universal cell phone has led major semiconductor firms to
develop dual-band and multi-mode chipsets that will provide “anywhere in the world” communications.
These chipsets are required for the handheld JTRS.

There are several ways in which commercial cell phone and GPS chipsets can be integrated into the
handheld JTRS. The first choice is to obtain cell phone and GPS capability in a PCMCIA or similar
format, and provide slots in the handheld JTRS. This provides a simple upgrade path as commercial cell
phones evolve. An alternate approach is to connect to these chipsets using a commercial standard bus
such as Small PCI or PC104Plus. One challenge with these commercial chipsets will be tying them to the
JTRS operator interface. Some form of I/O adapter may be necessary.

Either civilian or military (encrypted) GPS can be used in the JTRS. The civilian GPS offers cheap
commercial chip sets, low power operation, and reasonable accuracy (certainly good enough for
georouting). Military GPS offers superior accuracy and anti-jam, but will use more power. GPS power
consumption can be reduced by not operating the GPS continuously. There are limits to how rapidly a

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-85

handheld radio will move, time accuracy requirements for waveforms, and local time uncertainty based
on performance of the standard. Depending on the accuracy needed it may be possible to operate the GPS
once every 10 seconds or once a minute. As long as the current time and position offsets are stored, rapid
reacquisition is possible. GPS requires a circularly polarized antenna that “looks up” at the satellite
constellation. A simple patch antenna possibly with integrated LNA meets this requirement. This patch
antenna is inherently narrowband, and will serve to reject communications signals.

2.3.8 Deployment View Summary
The proposed JTRS radio architecture is fully scaleable to meet the needs of all users, from the combat
soldier to the airborne and maritime command posts. The architecture will stand the test of time and
technology. As technological advances permit the continuing integration of more and more functions into
a smaller space, the JTRS architecture will adapt.

The basic JTRS radio architecture is designed with flexibility and module reuse in mind. The RF,
Modem, Red/Black Processor, INFOSEC, I/O, Frequency Source, GPS, and Power Supply hardware
classes can be viewed as a set of rules that govern the instantiation or development of hardware “objects.”
When the hardware class rules are properly implemented, a form-factor-independent hardware object
conforming to the JTRS architecture may be developed. In the case of a five-channel radio, for example,
the RF class of objects may exist as five discrete receive and transmit modules, or as three dual-receive
and dual-transmit modules, or as a single 5-receive/transmit channel module, and still meet all of the
JTRS architecture requirements. Hardware form factor and integration levels are dictated by the specific
environmental and volume requirements of the domain targeted by a JTRS radio design.

The JTRS radio architecture does not mandate the use of COTS hardware but does encourage the use of
COTS hardware solutions. The use of COTS hardware is specifically encouraged to fulfill the radio
needs to support the GPS and commercially developed Cellular telephony. Leveraging commercially-
developed off-the-shelf hardware will result in a lower cost JTRS radio. COTS hardware does not stop at
the use of commercially developed GPS and Cellular phone systems. COTS hardware will also be
invaluable for fulfilling the Processor, I/O, Frequency Source, and Power Supply hardware object needs
for all JTRS radio deployments. At the present time, the RF, Modem, and INFOSEC hardware objects
are envisioned to be non-COTS. This does not preclude the use of COTS hardware when it becomes
available.

The JTRS HW Architecture provides the required resources and objects (i.e., common modules) that are
flexible enough to accept change, versatile enough to be integrated into multiple platforms, and capable of
evolving to meet changing mission requirements.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-86

2.4 APPLICATIONS VIEWS

2.4.1 Introduction
The purpose of the Applications View is to show how the JTRS Architecture supports the required
waveforms. To achieve that purpose, the Applications View presents examples of four
waveforms/modes, overlayed onto the JTRS Hardware and Software Views.

2.4.1.1 Example Waveforms Presented

Table 2.4-I lists the four example waveform/modes presented in the Applications View, along with the
rationale for their selection. The waveform/modes selected show a diverse complement of narrow-band
and wide-band waveforms that range from the moderately complex to the highly complex. The first three
waveforms presented are “legacy” waveforms specified by the ORD; the last waveform presented is a
“non-legacy” waveform. Presentation of both legacy and non-legacy waveforms shows that the JTRS
architecture not only supports key ORD-specified waveforms but also supports advanced waveforms and
networking concepts not currently fielded.

Table 2.4-I. List of Example Waveforms Presented

Waveform & (Mode) Rationale for selection
SINCGARS SIP
(Packet Mode & INC
functions)

• Narrow-band Legacy Waveform at Medium Complexity.
• Supports Voice and Networked Data (Part of Tactical Internet),
• Includes Frequency Hopping and Cipher Text modes,

EPLRS • Wide-band Legacy Waveform at Medium to High Complexity.
• Supports networked data (Part of Tactical Internet).
• Multiple simultaneous network services, and position location.

LINK-16 • Wide-band Legacy Waveform at High Complexity.
• Incorporates Fast Frequency Hopping, Spectrum Diversity.
• Networking and Relative Navigation.

Soldier Phone • Wide-band Non-Legacy Waveform at Medium Complexity.
• Incorporates advanced networking concepts.
• Adaptive RF and Quality of Service (QoS) Management

2.4.1.2 Generation of Applications Views.
Figure 2.4-1 illustrates how the Object Oriented (OO) approach to define the JTRS architecture (reference
section 2.1) is applied to generating applications views. The following are descriptions of the major
inputs required to generate applications views and descriptions of major applications view exhibits.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-87

Application
Views

Application
Viewpoint

Stakeholders
& Concerns

Interface
Definition

JTRS HW & SW
Views

Use Cases &
Scenarios

Waveform
Specifications

Rationale

Figure 2.4-1. Approach for Generating Applications Views

2.4.1.3 Major Inputs to Generating Applications Views
As illustrated in figure 2.4-1, the major inputs required for generating an applications view for a specific
waveform/mode are:

1. JTRS Hardware/Software Views

2. Waveform Specifications and Design Documentation

3. Use Cases & Scenarios.

JTRS Hardware and Software Views needed to develop Applications Views are the Object-Oriented class
structures and class definitions presented in Sections 2.2 and 2.3 of this report.

Waveform specifications and design documentation consist of the information that fully describes the
required waveform performance and structure, independent of implementation on a specific hardware
platform. The waveform performance specifications may include standards for interoperability with
legacy (or non-legacy) systems, specifications for critical end-to-end timing, and definition of external
interfaces. The waveform structure includes definition of waveform functions, protocol stacks, functional
block diagrams, and detailed timing specifications.

Use Cases & Scenarios are an object oriented (OO) method to capture the waveform requirements that
drive the detailed object oriented design of the waveform. Figure 2.4-2 illustrates the top-level Use Case
diagram for JTRS. Each “bubble” in the figure represents a group of related functions provided by JTRS.

Highlighted in the figure are the three use cases that apply to each waveform; those are “Send and
Receive Comm Traffic”, “Configure Radio”, and “Manage Fill”. For each waveform, a detailed
“Scenario” defines the required interaction of the waveform with its external “actors”. Table 2.4-II
describes the Use Case Scenarios for each waveform. Example Use Case Scenarios are provided in the
Appendix E.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-88

Radio
System

Baseband
System

8.
Send and Receive
Comms Traffic

7.
Configure

Radio

4.
Manage Software

Configuration

1.
Bootup and

Initalize

5.
Radio

Diagnostics

3.
Manage Physical

Configuration
2.

Manage
User Access

9.
Develop
SW/HW

Administrator

Comms User

Maintainer

Developer

JTRS

<<enables>>
<<uses>>

6.
Manage Key Fill

Security

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<develops>>

Figure 2.4-2. JTRS Use Case Diagram

Table 2.4-II. Use Case Scenario Descriptions

Use Case & Scenario Description
Use Case: Send & Receive Comms
Traffic

For each waveform, generate Scenarios 1 & 2

 Scenario 1: Transmit Defines required interaction between instantiated waveform
and external voice, data, and video equipment when
transmitting communications traffic.

 Scenario 2: Receive Defines required interaction between instantiated waveform
and external voice, data, and video equipment when receiving
communications traffic.

Use Case: Configure Radio For each waveform, generate Scenarios 1 & 2
(Note: These scenarios are not available in JTRS Step-1)

 Scenario 1: Create Channel Defines the “rule set” for allocation of JTRS resources to the
various modes of the specific waveform. (e.g., qty of RF
channels, type of RF channels (HD/FD), interface
characteristics, etc).

 Scenario 2: Configure Channel Defines the operator-selectable actions for an instantiated
waveform. (e.g., select preset, transmit power, data rate, etc).

Use Case: Manage Fill For each waveform, generate Scenario 1
(Note: These scenarios are not available in JTRS Step-1)

 Scenario 1: Define Fill Info Needed Defines the specific needs of the waveform for “fill”
information. (e.g., radio comms information (CI) vs. network
fill information)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-89

2.4.1.4 Major Exhibits of the Applications View

In Object Oriented analysis and design, the Use Cases & Scenarios facilitate the development of a class
structure to organize the waveform operations. The Applications Views provides the following
information for each of the waveforms presented, with emphasis on the “Send & Receive Comms Traffic”
Use Case Scenarios:

1. Functional Description

2. Class Structure

3. Sequence Diagrams

4. Hardware/Software Allocation

5. Timing Analysis (Available for EPLRS only).

2.4.1.4.1 Functional Description

The functional description for a waveform is an input to the Applications view. The functional
description provided in this report is generally a non-object-oriented functional block diagram from a
waveform specification or design document.

2.4.1.4.2 Class Structure

Class structure charts represent an organization of object oriented “classes” that are required for
waveform operations. Each of the required waveform functions from the functional description map to an
object oriented “class”. The class structure charts are independent of hardware and software
implementation.

Section 2.2 (SoftwareView) describes the general class structure available for application waveforms.
That information is summarized in figure 2.4-3. The Resource class extends into six subclasses
specifically to support waveform development. Table 2.4-III describes those extended classes.

Table 2.4-III. Top-Level Class Descriptions for Waveform Use

Resource Class
Extensions Description

Modem Resource Extends “Resource” class by adding the physical interfaces that are common to all
modem devices.

Link Resource Extends “Resource” class by adding the link layer interfaces.
Can be implemented on the red and black sides of the INFOSEC boundary as
required by the link layer interfaces.

INFOSEC Resource Extends “Resource” class by adding the INFOSEC and crypto interfaces.
Network Resource Extends “Resource” by adding the network layer interfaces.

Can be implemented on the red and black sides of the INFOSEC boundary as
required by the link layer interfaces.

Access Resource Extends “Resource” class by adding a set of multi-media resources such as
audio, video, serial, Global Positioning System (GPS), and Ethernet. These
resources contain the device drivers and the protocol.

Utility Resource Extends “Resource” class by adding a set of embedded Utility resources such as
message formatting, filtering, correlation, and situational awareness.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-90

Resource

UtilityResourceAccessResourceNetworkResourceLinkResource INFOSECResourceModemResource

RepeaterResource

Retransmit
ControlModem

Waveform Link
Resource

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
Selftest

Bridge Resource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

INFOSEC Agent
Resource

TranslateINFOSEC

INFOSEC Domain
Resource

Encrypt
Decrypt
Authenticate
Fill
Bypass
GenerateTRANSEC
TimeSlotBuffer
Selftest

Router Resource

TranslateAddress
Route
TransmitMessage
ReceiveMessage
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

Waveform Network
Resource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQual
AnalyzeNetworkQual
ManageVirtualCircuit
AdaptMessage
ManageRF
Selftest

Serial Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Ethernet Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Audio Resource

ConfigurePort
PTT
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
Selftest

Gateway Resource

TranslateMessage
TranslateVoice
TranslateVideo

Msg Filter Resource

TypeFIlter
GeographicFIlter
PriorityFilter

Sit Aware Resource

CollectPositionReports
ConsolidatePosition
 Reports
DisseminatePosition
 Reports

Host Agent Resource

TranslateHost

Figure Application A-3. Summary Class Structure for Waveform Use.

Waveform RF
Resource

PA
LNA
UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
Selftest

Waveform Modem
Resource

Modulator
Demodulator
Interleave
De-Interleave
FEC_Encode
FEC_Decode
Filter
Spread
Despread
Synchronize
Track
Correlate
Acquire
AcquirePacket
SchedulePacket
TimeStamp
TRANSEC
D/A Converter
A/D Converter
TDMATimer
Selftest

Modem Agent
Resource

TranslateModem

Figure 2.4-3. Summary Class Structure for Waveform Use

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-91

Each of the six extensions of “Resource” class are further defined into more detailed subclasses, as
illustrated by figure 2.4-3. The overall class structure can be thought of as a library of classes (or
functional packages) that are available for re-use from one application to another. As JTRS-compatible
waveforms are developed, subclasses contained in the JTRS class library are available for re-use as
applicable to the specific waveform under development. When a needed subclass is not available from
the JTRS class library, the overall JTRS software structure allows the simple addition of that needed
subclass. As subclasses are added, the overall functionality available for re-use also grows.

The specific class structure for each waveform is presented using a modified figure 2.4-3, with applicable
classes highlighted for the particular waveform.

2.4.1.4.3 Sequence Diagrams
Sequence diagrams show the required behavior between actual waveform “objects”. The waveform
objects are instantiated from the class structure. The required behavior is shown by the identification of
objects and the communications required between those objects. Where feasible, the sequence diagrams
are presented as direct output from the Rational Rose object oriented analysis and design tool.

2.4.1.4.4 Hardware/Software Allocation

The Hardware/Software Allocation chart compares the HW/SW-independent Class Structure with the
JTRS Hardware and Software structure defined in sections 2.2 and 2.3.

2.4.1.4.5 Timing Analysis

Waveform timing analysis shows the ability of the JTRS architecture to support critical waveform timing.
Section 2.7 presents the methods for conducting multi-channel timing analysis. In addition, Appendix D
provides a timing analysis for EPLRS.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-92

2.4.2 SINCGARS SIP

The family of SINCGARS radios support tactical voice and data communications, with over 150,000
radios currently fielded for the U.S. armed forces. SINCGARS SIP provides over 60 waveforms/modes
that support voice, analog data (TACFIRE), Mil-Std-188-114 data, RS-232 data, and packet data
communications. Variants of the voice/data modes include single channel (SC) versus frequency
hopping, plain text (PT) versus cipher text (CT), and several data rates for the Mil-Std-188-114 data.

When the SINCGARS radio is set to packet data mode, a separate SINCGARS module, called the Internet
Controller (INC), supports IP packet data routing between SINCGARS radio nets, EPLRS, external Host
computers, other routers, and other networks. The INC module is a software controlled IP data router.
The INC contains the UDP/TCP/IP protocol stack to provide routing of IP data packets. The INC also
contains the MIL-STD-188-220A link layer protocol to support networking over SINCGARS; and the
INC contains an “EPLRS agent” to support connection of the EPLRS system with IP-based networks.

The SINCGARS SIP packet data mode and related functionality of the Internet Controller (INC) is of key
interest given the development of the US Army Tactical Internet with data networking capabilities. This
section illustrates how the JTRS architecture supports the SINCGARS SIP packet mode and INC
functionality to provide voice and packet data communications.

2.4.2.1 Functional Representation of SINCGARS Packet Mode & INC Functions
In Packet data mode, SINCGARS provides standard CNR voice communications using CSMA within the
CNR net, and data networking that may extend beyond the immediate CNR net through inter-networking.

A functional block diagram of SINCGARS SIP Packet data mode and INC functionality is provided in
figure 2.4-4. The top portion of the figure illustrates the receive path for voice and packet data; the
bottom portion of the figure illustrates the transmit path for voice and packet data. Legacy “INC”
functions are highlighted in gray to distinguish them from the “radio” functions provided by the legacy
SINCGARS RT.

To provide interoperability with fielded SINCGARS SIP/INC systems, the JTRS implementation of
SINCGARS packet data mode and INC functions must implement the same functional representation as
the legacy SINCGARS system and comply with the following specifications:

1. MIL-STD-188-241-1, SINCGARS Waveform Specification, February 10, 1989,
(SECRET).

2. MIL-STD-188-220A, Interoperability Standard For Digital Message Transfer Device
Subsystems.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-93

Transmit
SC/CT

Transmit FH
(PT or CT)

Transmit
SC/PT A/D

CVSD
Encode

Volume
Control

Tx Audio
KY-57
Encrypt

KYV-5
Encrypt

Alarms

FH Block
Interleaving

SC Block
Interleaving

FEC
RS
(32,12)

Route IP
Packets

Build Link
Layer
Frames

Data
Packets

D/A

Receive
SC/CT

Receive FH
(PT or CT)

CVSD
Decode

Volume
Control

Rcv Audio
 & Alarms

KYV-5
Decrypt

KY-57
Decrypt

Alarms

FH Block
De-Interleave

SC Block
De- Interleave FEC

RS
(32,12)

Route
IP
Packets

Route Link
Layer
Frames

Data
Packets

Receive
SC/PT

D/AA/D

Sidetone
& Alarms

Net Access
(CSMA)

Voice PTT

CTS Indication

CTS Indication Data PTT

ECCM Functions
(TRANSEC, Time Mgt)T/R = “INC” functions

Figure 2.4-4. Functional Block Diagram – SINCGARS SIP Packet Mode & INC

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-94

2.4.2.2 Class Structure

Figure 2.4-5 illustrates the object-oriented class structure of the SINCGARS SIP Packet waveform and
INC functions. The class structure encompasses the required functionality to implement the packet
waveform and INC functions. The class structure is independent of hardware/software allocation.

2.4.2.3 Sequence Diagrams
Sequential behavior of SINCGARS FH Voice and Packet Data operation is provided in figure 2.4-6
through figure 2.4-9. The sequence diagrams show the required behavior between the class structure
“objects” that comprise the SINCGARS waveform. The waveform objects are instantiated from the class
structure. The required behavior is shown by the identification of objects and the communications
required between those objects.

Sequential behavior of SINCGARS FH voice and packet data TRANSMIT (reference figure 2.4-6 and
figure 2.4-7) is described in detail by the “Use Case Specification - Transmit SINCGARS Waveform”
presented in Appendix E. Similarly, sequential behavior of SINCGARS FH voice and packet data
RECEIVE (reference figure 2.4-8 and figure 2.4-9) is described in detail by the “Use Case Specification -
Receive SINCGARS Waveform”, also presented in Appendix E. The following discussion summarizes
the sequential behavior.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-95

Resource

UtilityResourceAccessResourceNetworkResourceLinkResource INFOSECResourceModemResource

RepeaterResource

Retransmit
ControlModem

Waveform Link
Resource

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
Selftest

Bridge Resource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

INFOSEC Agent
Resource

TranslateINFOSEC

INFOSEC Domain
Resource

Encrypt
Decrypt
Authenticate
Fill
Bypass
GenerateTRANSEC
TimeSlotBuffer
Selftest

Router Resource

TranslateAddress
Route
TransmitMessage
ReceiveMessage
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

Waveform Network
Resource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQual
AnalyzeNetworkQual
ManageVirtualCircuit
AdaptMessage
ManageRF
Selftest

Serial Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Ethernet Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Audio Resource

ConfigurePort
PTT
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
Selftest

Gateway Resource

TranslateMessage
TranslateVoice
TranslateVideo

Msg Filter Resource

TypeFIlter
GeographicFIlter
PriorityFilter

Sit Aware Resource

CollectPositionReports
ConsolidatePosition
 Reports
DisseminatePosition
 Reports

Host Agent Resource

TranslateHost

Figure Application B-2. Class Structure for SINCGARS SIP & INC.

Waveform RF
Resource

PA
LNA
UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
Selftest

Waveform Modem
Resource

Modulator
Demodulator
Interleave
De-Interleave
FEC_Encode
FEC_Decode
Filter
Spread
Despread
Synchronize
Track
Correlate
Acquire
AcquirePacket
SchedulePacket
TimeStamp
TRANSEC
D/A Converter
A/D Converter
TDMATimer
Selftest

Modem Agent
Resource

TranslateModem

= Classes that apply to SINCGARS SIP & INC
Transmit & Receive Voice & Packet Data

Key:

Figure 2.4-5. Class Structure for SINCGARS SIP & INC

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-96

Figure 2.4-6 shows the sequential operation of a SINCGARS FH voice transmission. As shown,
SINCGARS FH voice transmission is initiated by a push-to-talk input. The radio commits to transmit by
verifying there is no activity on the channel, then disables all receive search processing. Actual
transmission starts with the system enabling TRANSEC processing to synchronize and maintain
communications along with enabling the RF exciter. A visual alert is sent to the Comm User as to their
level of COMSEC security for this transmission (PT or CT). Sidetone is output to the user indicating the
system is ready to accept voice input. As the User speaks, the voice input is A/D converted, CVSD
encoded, then encrypted (if CT mode). The resulting data is interleaved per MIL-STD-188-241, then D/A
sampled, and FSK modulated onto the RF channel. Voice continues to be sampled, processed and
transmitted until the release of PTT. When PTT is released, all transmit operations are halted and receive
search processing is enabled.

Figure 2.4-7 shows the sequential operation of a SINCGARS FH packet data transmission. SINCGARS
FH packet data transmission is initiated when the internal JTRS network applications routes an IP packet
data message(s) to the SINCGARS channel. The radio encapsulates the IP message(s) in a MIL-STD-
220A link layer frame at a maximum length of 14,400 bits, and places the frame in the SINCGARS
transmit queue. This activates X.21 data signaling and CSMA channel access protocol to initiate
transmission of the message over the SINCGARS channel. When the SINCGARS channel is activated,
the system encrypts the data, performs Reed Solomon (32, 12) forward error correction, and TRANSEC
covers the data per MIL-STD-188-241. The result is FSK modulated onto the RF carrier. When data
transmission is complete, the system transmits an End of Message (EOM) and returns the channel to
receive search processing.

Figure 2.4-8 shows the sequential operation of a SINCGARS FH voice reception. As shown, an FH voice
reception is initiated by FH correlation, which is detection of RF energy on the FH channel. Once
initiated, the system inhibits transmissions and informs the user of receive traffic and security level. The
system demodulates the FSK signal per MIL-STD-188-241 to base band, decrypts, decodes and sums in
the appropriate COMSEC tone into the voice data. Voice is then output to user. Reception is terminated
with the detection of the EOM, and the channel is returned to a receive search mode.

Figure 2.4-9 shows the sequential operation of a SINCGARS FH packet data reception. As shown, an FH
packet data reception is initiated by FH correlation, which is detection of RF energy on the FH channel.
Once initiated, the system then inhibits transmissions and informs the user of receive traffic and its
security level. As the data is received, the system demodulates the FSK signal per MIL-STD-188-241 to
base band, then de-interleaves and decrypts the data, which results in the recovered MIL-STD-188-220A
link layer frames. The link layer frames are unpacked, and the resulting IP data message(s) are routed to
the JTRS internal networking services. Reception is terminated with the detection of the EOM, and the
channel is returned to a receive search mode.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-97

FSK :
Modulator

Voice : PTTCVSD :
EncodeAudio

FhVox :
ControlModem

FH : Correlate CSMA :
SchedulePacket

SDM :
Interleave

FhSDM :
Synchronize

FhSDM :
FrequencyControl

KY57 : Encrypt

ActivePTT()

ChannelActive()

CSMASlotOpen()

RedConnections()

BlackConnections()

GotoFhSDMTraffic()

MaintainFH()

//EncodeCVSD()

Encryption()

FormatSDMdata()

INFOSEC Red ProcessorRF Modem Black Processor

FmModulate()

Figure 2.4-6. Sequence Diagram for SINCGARS FH Voice Transmission

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-98

FhEDM :
Synchronize

RTS : Schedule
APacket

FH : Correlate TxFhPacket :
ControlModem

CSMA :
SchedulePacket

ReedSolomon :
FecEncode

Packet :
Interleave

FSK :
Modulator

CTS :
Transmit

KYV5 : EncryptFHPacket :
Frequency

RtsPacket()

ChannelActive()

CSMASlotOpen()

RedConnections()

BlackConnections()

GoToFhEdmTraffic()

MaintainFH()

CtsPacket()

Encryption()

RS32,12()

FormatEDMdata()

FmModulate()

INFOSEC RedProcessorBlack ProcessorModemRF

Figure 2.4-7. Sequence Diagram for SINCGARS FH Packet Data Transmission

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-99

RxRhVoice :
ControlModem

Act ive :
Correlate

FSK :
Demodulator

FhSDM :
FrequencyControl

SDM :
Synchronize

Voice : De
Interleave

CVSD :
DecodeAudio

KY57 : Decrypt

ChannelAct ive()

GotoFhSDMTraffic()

BlackConnections()

RedConnections()

MaintainFH()

FMDemod()

BasebandSDMdata()

Decryption()

//DecodeCVSD()

RF Modem Black Processor INFOSEC Red
Processor

Figure 2.4-8. Sequence Diagram for SINCGARS FH Voice Receive

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-100

ReedSolomon :
FecDecode

FhPacket :
FrequencyControl

FSK :
Demodulator

Packet : De
Interleave

FhEDM :
Synchronize

EDM :
Correlate

RxFhPacket :
ControlModem

X21 : Receive
Message

KYV5 : Decrypt

ChannelActive()

BlackConnections()

GoToFhEdmTraffic()

RedConnections()

MaintainFH()

FMDemod()

BasebandEDMdata()

RS32,12()

Decryption()

Format4X21()

RF Modem Black Processor INFOSEC Red
Processor

Figure 2.4-9. Sequence Diagram for SINCGARS FH Packet Data Receive.

Figure 2.4-9. Sequence Diagram for SINCGARS FH Packet Data Receive

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-101

2.4.2.4 Hardware/Software Representation

Table 2.4-IV shows how the SINCGARS Packet mode and INC functions can be allocated to the JTRS
architecture.

Table 2.4-IV. Allocation of Functions to Software and Hardware

Waveform Functions JTRS Software Classes JTRS Hardware Classes
T/R -- RF Module

Receive SC/PT Waveform Link Resource Modem
Receive SC/CT Waveform Link Resource Modem
Receive FH (PT or CT) Waveform Link Resource Modem
SC Block De-Interleave Waveform Modem:

De-interleave
Black Processor

FH Block De-Interleave Waveform Modem:
De-interleave

Black Processor

FEC RS(32,12) Waveform Modem:
FEC-Decode

Black Processor

KY-57 Decrypt INFOSEC Domain: Decrypt INFOSEC
KYV-5 Decrypt INFOSEC Domain: Decrypt INFOSEC
CVSD Decode Audio Resource:

Decode Audio
Red Processor

Route Link Layer Frames Waveform Link: Route Packet Red Processor
Route IP Packets Waveform Network:

Route Message
Red Processor

Volume Control Audio Resource Red Processor
ECCM Functions (TRANSEC) Waveform Modem: TRANSEC Modem
Net Access (CSMA) Waveform Link:

Schedule Packet
Black Processor

Build Link Layer Frames Waveform Link:
Schedule Packet

Red Processor

CVSD Encode Audio Resource: Encode Audio Red Processor
KYV-5 Encrypt INFOSEC Domain: Encrypt INFOSEC
KY-57 Encrypt INFOSEC Domain: Encrypt INFOSEC
FEC RS(32,12) Waveform Modem:

FEC Encode
Black Processor

FH Block Interleaving Waveform Modem: Interleave Black Processor
SC Block Interleaving Waveform Modem: Interleave Black Processor
Transmit FH (PT or CT) Waveform Link Resource Modem
Transmit SC/CT Waveform Link Resource Modem
Transmit SC/PT Waveform Link Resource Modem

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-102

2.4.3 EPLRS Application View

This section examines the current Enhanced Position Location Reporting System (EPLRS) radio sets and
summarizes the key architectural and design issues necessary to embed the equivalent “EPLRS
waveform” capability in the Joint Tactical Radio System open architecture.

The EPLRS Application View uses the Send and Receive Comms Traffic Use Case/Scenario, specifically
EPLRS Transmission, and EPLRS Reception.

2.4.3.1 Functional Representation of EPLRS Waveform
To fully appreciate the mapping of the EPLRS functions into the JTRS architecture, a thorough
understanding of both the signal flow and necessary hardware and software partitioning is needed. The
following provides this information from several perspectives.

2.4.3.1.1 EPLRS Operation

EPLRS consists of netted radio sets operating in conjunction with a Net Control Station (NCS) to perform
multiple communications services and precision position location. EPLRS operates on single or multiple
frequencies in the 420-450 MHz band. EPLRS is a direct-sequence spread spectrum system using a 5
Megachips/sec chip rate. The RF channel bandwidth is nominally 3 MHz, using continuous phase shift
modulation (CPSM), a form of minimum-shift-keying (MSK). The radio sets operate in a synchronized,
slotted TDMA network. Each radio set can be configured to provide a variety of host data interface
formats, including ADDSI X.25, MIL-STD-1553B, and a planned Ethernet interface. Multiple
communications services can be provided by a single radio set via assignment of different services on
different TDMA slots. Scheduled communication services, which include robust relaying for the tactical
environment, can include (1) Duplex services, (2) Group services, (3) Carrier-Sense Multiple Access
(CSMA) service, and (4) Multisource Group (MSG) service. In addition, all radio sets participate on a
coordination net for setup of virtual circuits, and a control net in conjunction with the NCS to support
time dissemination, OTAR, and resource selection for duplex circuits. Each radio set performs precision
time-of-arrival (TOA) measurement resulting from tracking the pseudonoise 5 Mchip/sec spreading code.
TOA measurements are processed to provide position location for the network members. The radio set
includes an internal crypto (KGV-13) which is used for randomization of transmission parameters and for
traffic encryption and OTAR. A functional block diagram of the radio set transmit and receive operations
is shown in figure 2.4-10. Note that each radio set is a half-duplex radio which can either transmit or
receive in a given slot, but not both. EPLRS has a dual-level encrypt/decrypt capability, providing both
Traffic and Community of Interest (COI) encryption/decryption. For this analysis, the “EPLRS VECP”
baseline is assumed, which omits the COI encrypt/decrypt.

The figure also shows the hardware partitioning of the EPLRS User Unit (EPUU). The unit contains:

1. RF Assembly (RFA)

2. Signal and Message Processor (SMP) containing Signal Processor (SP) and Message
Processor (MP), which interface with a KGV-13 crypto device to provide the traffic
encrypt, traffic decrypt, and message validation (CRC checks) shown in the figure.

3. Interface Module Assembly

4. Power Amplifier and T/R switch.

Note: this list includes only the critical assemblies associated with transmission and reception; other
assemblies such as the control panel and power supplies are omitted.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-103

P A

L N A

F R E Q
 C O N V

F R E Q
 C O N V

C P S M
 M O D U L A T O R

D E M O D
 S Y M B O L
 A C C U M

 S I G N A L
 T R A C K

P N
 G E N E R A T O R

I N T E R -
 L E A V E

D E I N T E R -
 L E A V E

F E C
 C O D E

F E C
 D E C O D E

M S G
 V A L I D A T I O N

 E N C O D E
T R A F F I C

 E N C R Y P T

T R A F F I C
 D E C R Y P T M S G

 V A L I D A T I O N
 D E C O D E

M E S -
S A G E

 P R O -
C E S S O R

I N T E R F A C E
 M O D U L E

 A S S E M B L Y H O S T

T I M E

O F

A R R I V A L

(T O A)

R F A S P M P I M A P A ,
 T / R S W

Figure 2.4-10. Functional Block Diagram of EPLRS Transmit and Receive Functions

2.4.3.1.2 EPLRS Physical-Layer Waveform
EPLRS operates in four waveform modes, designated Mode 0, 1, 2, and 3. The modes differ in available
user data rate, data coding, and hence number of chips/bit (AJ capability). Figure 2.4-11 shows the
transmission burst and summarizes the key characteristics of each mode. There are 80 user (host) data
bits per transmission burst in Modes 0 and 1, 160 in Mode 2, and 240 in Mode 3. The mode can change
on a slot by slot basis. Frequency hopping is also on a slot by slot basis. EPLRS operation is organized
around the TDMA timeslot boundary. The TDMA slot structure uses 512 slots per second
(approximately 2 msec per slot), with the actual transmission being a burst of approximately 1 msec
duration as shown in the figure. Time/frequency resources are allocated in frames of 128 slots (1/4
second frames) by the Message Processor.

MODE SPREAD
RATE

FEC DATA BITS
PER SLOT

POWER
RISE

PREAMBLE TIME
REFINE

CHNL
BITS

BUFFER POWER
FALL

TX Time

 0 19 (7,4)
Hamming

104 12 us 320 Chips 228
Chips

182 11.4 us 824.6 us

 1 28 RS(31,21) 105 12 us 384 Chips 392
Chips

155 12.8 us 11.4 us 1059.4 us

 2 15 RS(31,19) 190 12 us 320 Chips 210
Chips

310 11.4 us 1059.4 us

 3 10 RS(31,18) 270 12 us 320 Chips 140
Chips

465 14 us 11.4 us 1059.4 us

POWER
RISE

PREAMBLE TIME
 REFINE

POWER
FALL

DATA

BUFFER

EPLRS TRANSMISSION PACKET

Figure 2.4-11. EPLRS Burst Characteristics in the Four Waveform Modes

The EPLRS channel is configured under the control of the NCS. Initial crypto load and guard channel
selection are necessary for an EPUU to acquire the NCS Time of Day (TOD) message. It then performs
network synchronization with the NCS and all other operational parameters are received from the NCS
via the network. Communications services are established and maintained in a needline library at the
NCS, with some comm services providing the capability for users (at EPLRS hosts) to make changes to
the needline library maintained at the NCS. Host to host data communications requires establishing
specific needlines and needline parameters. Once these are communicated to the NCS and established to
the EPUU, the host can access all the services. Because of the TDMA architecture of the system, each

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-104

host system interfacing with EPLRS has the capability for simultaneously communicating with other host
systems interfaced with EPLRS on several circuits. Each circuit can be set up independently as any of
services described in Section 2.4.3.1.1 (duplex, group-addressed, MSG, CSMA). The EPUU also
supports radio-set-to/from-NCS (via the control net) and radio set-to/from-radio set via the Local Subnet
communication (limited free text messages). All these capabilities use the same EPLRS physical-layer
waveform. This Application View focuses on EPLRS host-to-host communication.

2.4.3.2 Class Structure for the EPLRS Waveform
From a functional allocation viewpoint, control within the timeslot is generated by the Timing and
Control portion of the Signal Processor, upon being set up for a timeslot by the Message Processor
Function (refer to figure 2.4-10). The Message Processor Function keeps track of all the unit’s assigned
receive, transmit, and idle timeslots. During a frame, the Message Processor Function will schedule all
processing for the current slot and the next few timeslots. Typical tasks the Message Processor must
perform to service this timeslot span are to collect data received from the last timeslot, look at flags raised
during the present timeslot, and build up and prepare the next timeslot.

In the current EPUU, red and black processing are separated in time to control emanations. In contrast,
the JTRS must by necessity include a controlled red/black boundary, with continuous processing (for
multiple waveforms) occurring on both sides of that boundary. This will require a different approach for
controlling emanations. As a consequence, the budgeted timelines for the JTRS functions need not (and
in some cases do not) follow current EPLRS timelines. With this approach, judicious buffering can be
applied between the modem (i.e the “EPLRS SP”) and INFOSEC functions, and also between the
INFOSEC functions and the Red Processing (i.e. the “EPLRS MP”). With these buffers in place, the
EPLRS waveform maps smoothly to the JTRS architecture.

Table 2.4-V provides a mapping of the EPLRS functions given in the top level description above to JTRS
waveform resources. Five waveform resources are used: ModemResource, LinkResource,
INFOSECResource, NetworkResource, and AccessResource. The mapping of these resources to JTRS
hardware and/or software classes is implementation-dependent. The resources listed could contain either
hardware or software classes. An example allocation to the JTRS hardware and software class library to
meet critical system timing budgets is addressed in section 2.4.3.4.

Table 2.4-V. EPLRS Transmit/Receive Functions Mapped to EPLRS Waveform Classes

EPLRS Functions EPLRS Waveform Class Mapping
PA and T/R Switch ModemResource: Waveform RF Resource
RFA
 LNA ModemResource: Waveform RF Resource
 Frequency Converter ModemResource: Waveform RF Resource
 CPSM Modulator ModemResource: Waveform Modem Resource
 PN Spread ModemResource: Waveform Modem Resource
SP
 Traffic Encrypt INFOSECResource: INFOSEC Domain Resource
 Traffic Decrypt INFOSECResource: INFOSEC Domain Resource
 Msg Validation Encode INFOSECResource: INFOSEC Domain Resource
 Msg Validation Decode INFOSECResource: INFOSEC Domain Resource
 FEC Encode ModemResource: Waveform Modem Resource
 FEC Decode ModemResource: Waveform Modem Resource
 Interleave ModemResource: Waveform Modem Resource
 Deinterleave ModemResource: Waveform Modem Resource

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-105

 Demod/Symbol Accum/Signal Track ModemResource: Waveform Modem Resource
 PN Generator ModemResource: Waveform Modem Resource
Message Processor NetworkResource

LinkResource
Interface Module Assembly NetworkResource

AccessResource

The EPLRS class structure is shown in figure 2.4-12. A dictionary containing the definition of each class
and subclass used for EPLRS transmit and EPLRS receive is provided with the transmit and receive
sequences in Section 2.4.3.3.2.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-106

Resource

UtilityResourceAccessResourceNetworkResourceLinkResource INFOSECResourceModemResource

RepeaterResource

Retransmit
ControlModem

Waveform Link
Resource

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
Selftest

Bridge Resource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

INFOSEC Agent
Resource

TranslateINFOSEC

INFOSEC Domain
Resource

Encrypt
Decrypt
Authenticate
Fill
Bypass
GenerateTRANSEC
TimeSlotBuffer
Selftest

Router Resource

TranslateAddress
Route
TransmitMessage
ReceiveMessage
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

Waveform Network
Resource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQual
AnalyzeNetworkQual
ManageVirtualCircuit
AdaptMessage
ManageRF
Selftest

Serial Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Ethernet Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Audio Resource

ConfigurePort
PTT
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
Selftest

Gateway Resource

TranslateMessage
TranslateVoice
TranslateVideo

Msg Filter Resource

TypeFIlter
GeographicFIlter
PriorityFilter

Sit Aware Resource

CollectPositionReports
ConsolidatePosition
 Reports
DisseminatePosition
 Reports

Host Agent Resource

TranslateHost

Figure Application C-3. Class Structure for EPLRS.

Waveform RF
Resource

PA
LNA
UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
Selftest

Waveform Modem
Resource

Modulator
Demodulator
Interleave
De-Interleave
FEC_Encode
FEC_Decode
Filter
Spread
Despread
Synchronize
Track
Correlate
Acquire
AcquirePacket
SchedulePacket
TimeStamp
TRANSEC
D/A Converter
A/D Converter
TDMATimer
Selftest

Modem Agent
Resource

TranslateModem

= Classes that apply to EPLRS
Key:

Figure 2.4-12. Class Structure for EPLRS

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-107

2.4.3.3 EPLRS Sequence Diagrams

Sequence diagrams have been developed based on the class and subclass structures described above.
Transmission and reception on a Point-to-Point (duplex) circuit has been taken as the baseline for this
example JTRS Application View. The sequence diagram is chosen because it is a convenient method to
identify sequences of events and to identify dependencies of events. It also identifies the key interfaces
between objects in the architecture. Although the Rational Rose development tool was not used to
generate the EPLRS diagrams, Rational Rose sequence diagrams were used as guidance in formatting this
presentation.

The operations shown in the sequence diagrams build on the EPLRS construct of separating EPLRS SP
and EPLRS MP functions with a “shared RAM structure” and/or API defined between them. For
compatibility with the JTRS architecture this structure was extended to also split the EPLRS SP and
EPLRS INFOSEC functions, with a similar structure between them. This construct, combined with the
EPLRS random time of day (RTOD) crypto implementation, necessitates some specialized functionality
in the INFOSEC processing (as evidenced by the INFOSEC class definitions). This is not the only
possible configuration. This construct simply assists in illustrating at least one way in that EPLRS
functions can be distributed across the JTRS architecture’s hardware and software objects.

The sequence diagrams make several assumptions regarding the implementation of EPLRS in JTRS; a
different set of subclasses or functions could be developed, depending upon specific implementation
details. For example, various methods of carrier and code tracking can be implemented which may merge
or separate the individual functions selected here. The most important output of the exercise is the
determination that EPLRS can indeed be mapped to the JTRS architecture.

2.4.3.3.1 Notes and Assumptions for EPLRS Sequence Diagrams
1. Some details of the use of the 14-bit “header” have been omitted.

2. Message handling for OTAR is excluded, but in general is transparent to all Modem and RF
functions and operations defined herein.

3. Message handling for net entry is not specifically addressed. For these diagrams, the KGV-
13 crypto in the INFOSEC is assumed to have been synchronized to network time.

4. The preamble threshold adjustment sequence, based on noise sampling and false alarm
measurement, is omitted.

5. Not explicitly shown in the flow diagram, but assumed: The INFOSEC receives a time slot
interrupt every slot from SchedulePacket, and maintains internal slot counter(s)
accordingly. The slot increment is used to advance the INFOSEC crypto state.

6. Implementation of amplitude shaping for the required EPLRS RF envelope rise/fall times
has been omitted. Depending on implementation details, this could be provided for in either
the RF or the Modem, or in a combination of the two.

7. Not shown, but architecturally required for operation in the EPLRS network: Provision for
commandable adjustment of RF section frequency reference and timing reference in
accordance with the TCVCXO (temperature compensated voltage-controlled crystal
oscillator) function of the EPLRS EPUU. The equivalent function could be accomplished
digitally in the modem or by using a dedicated TCVCXO in the same manner as the current
EPUU.

8. Not shown, but architecturally required for operation in the EPLRS network: Provision for
SchedulePacket to read a pressure transducer (barometric pressure sensor) on command
from the Red Processing, and report results; this is used for EPLRS position location
algorithms.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-108

9. The flow diagrams and class structures explicitly show a master sequencer/controller
function for the modem (SchedulePacket), since this is similar to current EPLRS practice.
Although a similar structure may exist in the INFOSECResource as well, one has not been
shown explicitly herein. The class/subclass structure for the INFOSEC is subject to further
review/modification, but is representative of the necessary capabilities.

2.4.3.3.2 Function Dictionary for Each Class

The following describes the functions performed in each resource or class.

NETWORKResource and LINKResource

Sets up receptions (and transmissions) in successive timeslots. This is a partial description. For
simplicity in this sequence diagram, a complete description is not included here, nor is the breakdown of
classes below these two resources provided.

ACCESSResource
For transmission, this function converts the AccessResource format (1553B, ADDSI, or Ethernet) to
EPLRS transmission units (TUs). For reception, this function performs the opposite conversion. This is a
partial description. For simplicity in this sequence diagram, a complete description is not included here.

INFOSECResource: INFOSEC Domain Resource
Decrypt / Authenticate. These two classes are combined for this initial EPLRS decomposition. Further
analysis is required to assign subclasses. The two interim subclasses are defined as follows:

Gen PN: Msg This function is used for receive slots. This function generates RXPN which
are sent to PN Buffer/Decrypt/CRC where it is stored, to be combined with incoming
ciphertext bits. This is a KGV-13 function. Next State increments the KGV-13 to the
required state for this operation.

PN Buffer/Decrypt/CRC Stores RED RXPN for multiple slots, for use in decrypting
messages as they are received, thus decoupling the internal crypto timing from modem
receptions (i.e., the crypto can run “ahead” of true timeslot timing for most efficient
INFOSEC resource allocation). Decryption consists of combining the received ciphertext
bitstream with this Red PN (RXPN). This function also must perform the message
validation check on the CRC sequence following the decrypt (a function previously
performed in the KGV-13). Messages failing the CRC are discarded. The number of
ciphertext bits processed is a function of the Mode (itself a subset of the PN Code
Parameters).

GenerateTRANSEC. Generate the “99 bits” used for randomization of various operations. Used for RF
frequency scramble, time slot scramble, interleave, and as PN seed for the cover and preamble generator.
This is a KGV-13 function. Subsets of these bits are distributed as needed to other functions as shown in
the sequence diagrams. All 99 bits are generated every timeslot, but not all bits are necessarily used in
every timeslot (for example, some randomization functions apply across multiple slots). The term “PN
Code” is used herein ONLY to refer to these specific bits or subsets thereof.

Authenticate / Encrypt. These two subclasses are listed together for EPLRS since these functions are
performed together in the current crypto. For transmit, this function uses the Msg Readout Order to read
the transmit Messages from the Red TS Buffer in physical transmission order. In effect, this performs the
transmit time slot scramble. Upon getting the Transmit Message, this function first appends a 10-bit CRC
and then encrypts the Message plus CRC. This is a KGV-13 function. Next State increments the KGV-
13 to the required state for this operation.

Bypass. Performs two functions: (1) Provides controls to scramble the order of timeslot processing
according to time slot scramble parameters (Note: this is driven by a subset of PN Code, but there are

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-109

other selectable options in future systems). (2) Scrambles logical transmit or receive frequency to create
physical frequency of transmission or reception. (Also driven by randomization PN except in non-FH
case, in which case the logical channel is passed through unaltered.) For function (1) the scramble is
accomplished for transmit slots by giving the Encrypt / Authenticate function the order in which to read
the logical slots in the Red TS Buffer (Msg Readout Order (Scrambled)), and for receive slots by actually
transferring the Slot Controls in the Red TS Buffer into the proper physical slots in the Black TS Buffer.
Thus the Logical to Physical Scramble function is providing a red to black “control bypass” function.

Red Time Slot Buffer. This buffer is ordered in logical (not scrambled or physical order) of
transmission/reception, and contains RED data (decrypted receive messages, unencrypted transmit
messages) or pointers thereto, and associated Slot Controls. For the purposes of this simplified sequence
diagram, this buffer definition incorporates both the EPLRS Time Slot Control Blocks and the associated
Comm Message Blocks as defined at the SP/MP interface (“shared RAM interface”), and ignores certain
other structures that must also be provided at this interface for completion of all EPUU operations
(Control Blocks, Net Entry Message Display Blocks, NCS Message Blocks, Cooordination Net Messsage
Blocks, Net Support Buffer Blocks, and CSMA Transmit Message Blocks), as defined in the EPLRS
TDNS Radio API Overview document. The buffer is refreshed continuously; as received messages arrive
and as transmit messages arrive. The use of this buffer effectively decouples the NetworkResource and
LinkResource from the time ordered INFOSECResource and ModemResource operations. Although
some knowledge of time slot timing is required by the NetworkResource and LinkResource for planning
slot operations, an interrupt (or some other form of timing transfer) every 4 slots (approximately 8 msec)
is sufficient synchronization using this approach. The use of this buffer simplifies the application of a
multifunction bus interface between the NetworkResource, LinkResource, and the INFOSECResource.
The size of this buffer could be as large as 256 slots (two frames) since the NetworkResource and
LinkResource will be scheduling and planning slots up to two frames ahead and could use this buffer
structure to store its results. However, practically speaking, it need only be four to eight slots “deep” to
maintain an effective interface.

Black Time Slot Buffer. This buffer is ordered in physical slot order (order of actual transmission,
scrambled, not logical order), and contains BLACK data (encrypted receive messages, encrypted transmit
messages) or pointers thereto, and associated Slot Controls, plus the PN Code that has been generated by
the KGV-13 for use in each slot (“the 99 bits”). Although reordered, the Slot Controls in this buffer
appear the same as in the Red Time Slot Buffer except that the logical channel number has been translated
to a physical (RF frequency) channel. Buffer is refreshed continuously, as received messages arrive and
as transmit messages arrive. The use of this buffer effectively decouples the INFOSECResource from the
time ordered ModemResource operations. Knowledge of time slot timing is required for proper operation
of the INFOSEC crypto, and therefore a slot interrupt (or some other form of timing transfer) every slot
(approximately 2 msec) is required by INFOSECResource. Nevertheless, this buffer permits the
INFOSEC to operate “ahead” on transmit processing and “behind” on receive processing, thus
simplifying the application of a multifunction bus interface between the INFOSECResource and the
ModemResource. All ModemResource operations are strictly synchronous with the TDMA slot clock, so
TS Controls (and transmit message data, if a transmit slot) are pulled (via GETs) sequentially from this
buffer by SchedulePacket.

ModemResource: Waveform Modem Resource

SchedulePacket. Maintains the modem interface with INFOSEC Black TS Buffer. Maintains the master
TDMA clock (slot clock) and performs slot-oriented timing and sequencing for the modem functions.
Reads slot control Long/Short and executes slot length changes to accomplish timing alignment. Also
includes (7,4) Hamming coding and interleaving for EPLRS Mode 0; this mode results in bypass of
Interleave, Deinterleave, FEC_Encode, and FEC_Decode functions. See function descriptions for those
functions.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-110

Synchronize. Determines the precise end of message time with respect to a specific in-slot marker in
accordance with the Waveform timing in the EPUU specification. Note: In practice, a TOA bias term
preset, accounting for propagation time to/from the physical antenna location, is also an input to this
function. This is normally a manual user entry.

TRANSEC . Generates Cover PN (chips) for data, and additional Preamble and Time Refine PN (chips).
These are produced by a nonlinear feedback shift register sequence, based on an input state from the PN
code. Mode input is assumed not needed for this process; instead, the downstream processes using the
PN use “Mode” to select from this superset of needed chips.

FEC_Encode and FEC_Decode. Performs Reed-Solomon (31, k) encode and decode where k depends on
Mode as follows: Mode 0 = RS encode/decode bypass (Hamming coding/decoding used; performed by
SchedulePacket); Mode 1 = (31, 21) RS encode/decode, one codeword per message. Mode 2 = (31, 19)
RS encode/decode, two codewords per message. Mode 3 = (31, 18) encode/decode, three codewords per
message.

Interleave and Deinterleave. Performs interleaving and deinterleaving of encoded messages. Operation
depends on Mode. Mode 0 = bypass (interleaving/deinterleaving of Hamming codewords performed by
SchedulePacket). Mode 1 = bypass (no interleaving; only one RS codeword). Mode 2/3: symbol
interleave/deinterleave across all RS codewords in message. PN Code is used to randomize this process.

Spread. For transmission, performs exclusive-OR of Cover PN with the encoded/interleaved message.

Correlate. For reception, correlates the incoming received I and Q samples from the A/D converter with
the stored PN reference Correlator PN (same as Preamble PN) and compares the output with a detection
threshold. During each 200 nsec clock period (one chip duration), the I and Q sign and magnitude bits are
compared to the reference signal (current implementation). The number of chips in the reference is
dependent on the waveform mode as follows: Mode 0 = 320 chips, Mode 1 = 384 chips, Mode 2 = 320
chips, Mode 3 = 320 chips. The results of the comparisons are recombined into composite I and Q
channel output signals. These signals are squared and summed prior to the threshold decision. The
threshold detector outputs a sychronization signal only when its preset threshold is exceeded, providing
time synchronization of the receiver with the incoming signal to +/- ½ chip (+/- 100 nsec) and phase
alignment for coherent data demodulation to +/-45 degrees (with a 180 degree ambiguity). These are the
initial signal timing and phase data sent to the carrier and code tracking loops to start the demodulation of
the message data. Note: above describes current implementation using adaptive 2 bit I and 2 bit Q A/D
quantization. The current implementation thus requires 4 parallel correlator stages, each of length defined
above.

For transmission, Correlate places the preamble PN and time refine PN (chips) at the front of the
message; number of chips depends on Mode.

Modulator. For transmission, perform filtering of the digital chip stream (including preamble and time
refine chips) to provide the phase trajectory of Continuous Phase Shift Modulation (CPSM) also known
as Minimum Shift Keying (MSK).

Track. For reception, a digital or analog tracking loop to track the carrier of the incoming CPSM
transmission. Accepts a starting carrier phase offset from Correlate at the beginning of a message.
Although the output of this function is shown in the Sequence Diagram as a frequency adjustment to the
A/D sample clock, there are other implementations possible, including direct control of the frequency
and/or phase of the RF LOs.

Demodulator. This function performs the dual role of (1) chip matched filtering, PN stripping, and data
accumulation, resulting in bit decisions (demodulated, despread data) and also (2) PN code tracking to
permit highly accurate time of arrival (TOA) measurement at the end of the message. Symbol
accumulators must be set to the appropriate number of chips per symbol depending on Mode, as follows:

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-111

Mode 0 = 19 chips/symbol, Mode 1 = 28 chips/symbol, Mode 2 = 15 chips/symbol, Mode 3 = 10
chips/symbol. Resolution of the PN tracking loop in the current implementation is +/-6.25 nsec (i.e., LSB
is 1/32 of a chip). TOA measurement accuracy must be sufficient to provide EPLRS system position
accuracies.

Acquire. For EPLRS this function performs AGC detection; it monitors the output of the A/D converters
and develops an AGC control word to the RF section.

A/D Converter. This function converts the analog IF signal from the RF section to digital baseband I and
Q for processing in the modem. A reference frequency for sampling is developed by Demodulator.
Depending on the A/D and AGC approach used, and Correlate implementation, it may be necessary to
provide chip matched filtering and a quantizer or adaptive thresholding technique to provide 2-bit
quantization of I and Q for use by the correlators.

D/A Converter. This function converts the shaped digital CPSM modulation (Digital I/Q) to an analog IF
for use by the RF section.

ModemResource: Waveform RF Resource

PA. Provides power amplification for the RF transmission. If this is a general purpose PA, bandselection
may be necessary for the EPLRS band, and is provided for by the Bandselect input. For generality in the
sequence diagram, EPLRS power control (Set Power) is shown as an input to both the ALC and PA
functions. It may be used in one or both places. The EPLRS EPUU standard power outputs (nominal)
are 100W, 20W, 3W, and 0.4W. These are commandable on a slot-by-slot basis.

LNA. Provides low noise amplification of the incoming RF signal. If this is a general purpose RF
section, bandselection may be necessary for the EPLRS band, and is provided for by the Bandselect input.

Filter. Provides RF and IF selectivity by appropriate bandpass filtering as selected by BandSelect.

FrequencyControl. Consists of the local oscillators necessary to convert the EPLRS signal from RF to the
desired IF.

LevelControl. Consists of the amplitude control and leveling necessary to provide the commanded power
output at the antenna port during transmission.

GainControl. Consists of the amplitude control and leveling necessary to provide the commanded
receiver gain as determined by the Acquire function.

UpConvert. Consists of the mixers, amplifiers, and filters necessary to convert the IF to the EPLRS RF
frequency.

DownConvert. Consists of the mixers, amplifiers, and filters necessary to convert the EPLRS RF
frequency to the IF.

2.4.3.3.3 EPLRS Transmit and Receive Message Sequence Diagrams

figure 2.4-14 provide the EPLRS Transmit Message and EPLRS Receive Message sequence diagrams,
respectively.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-112

THIS PAGE INTENTIONALLY LEFT BLANK

MSRC-5000SRD
Appendix C

C-A2-113

3: Net Parameters
4: TS Controls and Msg5: Get PN Code Parameters

6: Gen Scramble PN
8: Next State

9: Get Slot Controls10: Slot Controls scrambled

7: PN Code

14: Get Slot Controls
15: Set Frequency and Xmit/Rcv

18: Mode
20: Mode

22: Get PN Code Subset
23: Load PN Code Subset

24: Load Preamble PN
25: Load Time Refine PN

42: Filtered RF
38: RF

35: IF

31: Encoded/Interlvd Msg

27: Load PN Code Subset

19: Mode
21: Mode

30: Encoded Msg

Implementation of EPLRS Waveform Transmit Process using objects embedded in a JTRS compliant radio architecture.

11: Msg Readout Order (Scrambled)
12: Get Msg

13: Encrypted Msg and CRC

29: Encrypted Msg and CRC

26: Load Cover PN

32: Chip Stream
33: Chip Stream and Sync

34: Digital I/Q

40: Leveled RF

16: Set Power
17: Set Power

36: Local Oscillators

39: BandSelect
41: BandSelect

37: BandSelect

2: TUs
1: Hos

28: Get Encrypted Msg and CRC

J Thomas 4/29/99
D Knobbe Rev: D

PA Filter Level
Control

Up
Convert

D/A
Conv Modulator CorrelateFreq

Control

ModemResource: Waveform RF Resource ModemResource: Waveform Modem Resource INFOSECResource: INFOSEC Domain Resource

Spread
Sched
Packet

Inter-
leave TRANSEC

Black
TS
Buffer

Generate
TRANSEC Bypass

Encrypt
Authenti-

cate

Red
TS
Buffer

Network
Resource Access

ResourceLink
Resource

FEC_
Encode

Figure 2.4-13. EPLRS Waveform Transmit Message Sequence Diagram

C-A2-113/(C-A2-114 blank)Originally Published 7 May 1999

Implementation of EPLRS Waveform Transmit Process using objects embedded in a JTRS compliant radio architecture.

MSRC-5000SRD
Appendix C

C-A2-114

MSRC-5000SRD
Appendix C

C-A2-115

1: Net Parameters
2: TS Controls 3: Get PN Code Parameters

4: Gen Scramble PN
6: Next State

8: Get Slot Controls9: Slot Controls Scrambled

7: Generate RXPN

5: PN Code

10: Get Slot Controls

11: Set Frequency and Xmit/Rcv

12: Mode
14: Mode

16: Get PN Code Subset
17: Load PN Code Subset

18: Load Correlator PN
19: Load Time Refine and Cover PN

24: Signal/Noise

26: Rcv RF
27: Filtered RF

28: IF 29: Digital/Quantized I/Q

33: Digital I/Q
32: Digital I/Q

25: AGC Control

34: Sample Clock Phase Adj
35: Sample Clock Freq Adj

30: Starting Code Timing
31: Starting Phase Estimate

37: EOM 38: TOA Report
39: Encoded/Interlvd Msg

36: Load PN Code Subset

13: Mode
15: Mode

40: Encoded Msg
41: Msg

42: Msg and TOA Report

43: Get Msg and TOA Report
44: TOA Report
45: Decrypted/Validated Msg

46: Rcv Msg and TOA Report (Descrambled) 47: Get Rcv Msg and TOA

Implementation of EPLRS Waveform Receive Process using objects embedded in a JTRS compliant radio architecture.

20: Local Oscillators

22: BandSelect
23: BandSelect

21: BandSelect

48: TUs

J Thomas 4/29/
D Knobbe Rev:

Filter Level
Control

Down
Convert Acquire Track CorrelateFreq

Control
Gain
Control

ModemResource: Waveform RF Resource ModemResource: Waveform Modem Resource INFOSECResource: INFOSEC Domain Resource

A/D
Conv

Synchro
-nize

Sched
Packet

Deinter-
leave TRANSEC

Black
TS
Buffer

Generate
TRANSEC

Gen PN:
Msg Bypass

Decrypt
Authenti-

cate

Red
TS
Buffer

Network
Resource Acce

ResoLNA Link
Resource

FEC_
Decode

Demodu-
lator

Figure 2.4-14. EPLRS Waveform Receive Message Sequence Diagram

C-A2-115/(C-A2-116 blank)Originally Published 7 May 1999

Implementation of EPLRS Waveform Transmit Process using objects embedded in a JTRS compliant radio architecture.

MSRC-5000SRD
Appendix C

C-A2-116

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-117

To assist in understanding the sequence diagrams, the contents of each step in the transmit message and
receive message sequence diagrams are provided in Appendix E.

2.4.3.4 EPLRS Hardware/Software Allocation

A preliminary mapping of the EPLRS waveform resources and classes to JTRS Hardware and Software
classes was performed. Table 2.4-VI shows the results. The software classes and subclasses are taken
from the class structure in Section 2.4.3.1. The hardware mapping is to the basic module only. The
fourth column of this table provides rough estimates of the processing load (in MIPS), the FPGA gate
count, and memory allocations necessary for performing the function. In many cases the MIPS estimates
are for “burst” processing and are significantly lower if averaged over the slot time. The estimates are
based on the current EPLRS design, modified by the allocations across the JTRS subclasses. The
estimates are considered conservative. An efficient design implementation could achieve lower numbers
in all categories.

Table 2.4-VI. EPLRS Waveform Classes Mapped to JTRS Software/Hardware Classes

Waveform Classes JTRS Software Classes JTRS Hardware
Classes

Processing load, FPGA gates,
memory

AccessResource AccessResource ProcessorModule,
I/OModule

5 MIPS

NetworkResource and
LinkResource

Network Resource and
LinkResource

ProcessorModule 5 MIPS

INFOSECResource:
INFOSEC Domain
Resource

INFOSECResource:
INFOSEC Domain
Resource:

 Red TS Buffer TimeSlotBuffer 2 K bytes memory
 Decrypt / Authenticate:
 PNBuffer/Decrypt/CRC

 Decrypt / Authenticate 10 MIPS
2 K bytes memory

 Encrypt / Authenticate Encrypt / Authenticate INFOSECModule KGV-13 plus FPGA 10K gates
 Bypass Bypass 10 MIPS
 Decrypt / Authenticate:
 Generate PN: Msg

 Decrypt / Authenticate KGV-13 plus FPGA 10K gates

 GenerateTRANSEC GenerateTRANSEC KGV-13 plus FPGA 10K gates
 Black TS Buffer TimeSlotBuffer 2 K bytes memory

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-118

Waveform Classes JTRS Software Classes JTRS Hardware
Classes

Processing load, FPGA gates,
memory

ModemResource:
Waveform Modem
Resource

ModemResource:
Waveform Modem
Resource

 TRANSEC N/A FPGA 7K gates
 FEC_Encode and
 FEC_Decode

 N/A FPGA 30K gates

 Interleave and
 Deinterleave

 N/A FPGA 7K gates

 SchedulePacket SchedulePacket ModemModule FPGA 8K gates (uP core); 128K
ROM, 2M RAM

 Synchronize N/A FPGA 10K gates
 Spread N/A FPGA 3K gates
 Correlate N/A FPGA 105K gates correl.+3K logic
 Modulate N/A 400-500K gates

FPGA or
 Track N/A Commercial ASIC
 Demodulate N/A
 Acquire N/A FPGA 1K gates
 A/D Converter N/A
 D/A Converter N/A

ModemResource:
Waveform RF Resource

ModemResource:
Waveform RF Resource

 DownConvert N/A
 UpConvert N/A
 LevelControl N/A RFModule
 GainControl N/A
 FrequencyControl N/A
 Filter N/A
 LNA N/A
 PA N/A

2.4.3.5 EPLRS Timing Analysis
A timing analysis for the EPLRS waveform is provided in Appendix D.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-119

2.4.4 LINK-16

The Link-16 waveform in JTRS presents a formidable test of concept for the realization of a complex
waveform in a robust programmable radio architecture. Link-16’s operational demands of high frequency
operation with low latency real-time operation pose challenges to a complex multilevel software and
hardware radio architecture.

The Object-Oriented approach of the JTRS architecture readily deals with various abstraction levels that
can completely expose interfaces for rigid specification and control (low-level abstraction), or hide
interfaces for flexibility in achieving stringent performance requirements (high-level abstraction).
Operation of the Link-16 waveform instantiated in the JTRS is demonstrated with the Send and Receive
Comms Use Case.

2.4.4.1 Functional Definition of the Link-16 Waveform

Link-16 is a secure spread spectrum C3I waveform operating in L-Band between 969 MHz and 1206 MHz
that transports message data in a TDMA protocol at 128 slots per second. Message data may be from
fixed message catalogs, primarily TADIL J, or from user defined message catalogs.

Within Link-16 and TADIL J message formats, many network services are provided –

• Transport of digital data

• Transport of digital voice

• Operation in a multi-net environment

• Relative navigation

• Network time synchronization (active and/or passive).

Depending on the mode of operation, RF pulse transmissions can be frequency hopped over fifty-one 3
MHz channels at a rate of 79.6 kHz. Independent of mode, code spreading (5 MHz rate) is employed for
each RF pulse.

2.4.4.1.1 Link-16 Modes of Operation
Link-16 has three operating modes; i.e., Mode 1, Mode 2, and Mode 4. Mode 1 is the normally used
operational mode that is the most secure and employs all of the many randomizing processes used for
greatly obscuring intelligibility of the transmitted data, while also decreasing the probability of message
intercept. Modes 2 and 4 are less secure and are not used operationally.

Within the three modes of operation, Link-16 transmits data from a fixed message catalog (Fixed Format,
or FF) or from user defined catalogs (Free Text, or FT). The message content is derived from the
message catalogs and transported by one of many waveform formats (transport structure) offered by Link-
16. Following discussions deal with operation in Mode1 and FF structure.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-120

2.4.4.1.2 Link-16 Waveform Transport Structure (Mode 1 FF)

Every transmission is composed of a varying number of RF pulses, where each RF pulse contains a 6.4 µs
grouping of 32 chips (signaling elements) and a 13 µs pulse period (see figure 2.4-15(a)). The chip
repetition rate is 5 MHz. figure 2.4-15(b) shows how the RF pulses are combined to form the Standard
Message within the 7.8125 ms Link-16 TDMA time slot.

Every transmission starts with a message synchronization group of 32 RF pulses. In the Synchronization
group the contents, each pulse is composed of 32 chips derived from a pseudo random noise (PN)
sequence that is derived from an INFOSEC function. Every pulse after the Synchronization group is
formed using cyclic code shift keying (CCSK) as shown in figure 2.4-15(a). The next five bits in the
outgoing data stream are mapped to one of thirty-two 32 bit cyclic codes and added modulo 2 to thirty-
two bits from a PN stream.

The Synchronization group is followed by eight Time Refinement pulses that are formed using a 5-bit
zero sequence for the data. In the subsequent processing of the serial data stream, each grouping of five
data bits is collectively referred to as a data symbol.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-121

Synchronization
Time Refinement
Header
Data (with Parity)

32
 8

32
186

Message
Pulse Group

RF
Pulses

*
*Data and parity pulse count vary

as function of message type.

Jitter
7.8125 MS

Width
6.4 us

Period
13 us

32 PN Chips 5 BIT Symbol

32 BIT CCSK Code

32 PN Chips

Mapping

Modulo-2 Sum

Synchronization
Group

Non-Synchronization
Group

Continuously Phase Modulated
L-Band Carrier

(a) Link-16 RF Pulse

(b) Link-16 TDMA Slot with Typical Message (Standard)

Interleaved

BASIC LINK-16 TRANSMISSION SLOT

Figure 2.4-15. Link-16 Slot Structure

For FF messages, after the Synchronization group and Time Refinement pulses, the data symbols are
encoded using a Reed Solomon (RS) forward error-correction code (FEC). In subsequent descriptions, an
RS[n,m] Reed Solomon code takes “m” data symbols and encodes them into “n” total output symbols
(data plus parity). A header portion of the message consisting of seven symbols (thirty-five bits) is
encoded using an RS [16,7] code. Following the header, the remaining portion of the data stream is
processed in fifteen symbol (seventy-five bits) groupings with each group encoded using RS [31,15]
code. The Standard message, shown in figure 2.4-15 Application D–1(b), is composed of a single
RS[16,7] block and three RS[31,15] blocks. All RS symbols are interleaved to help protect against a burst
jammer and the start of transmission is jittered in a pseudo random manner in order to make it more
difficult for an interceptor to identify slot boundaries.

The Link-16 waveform data capacity is illustrated in figure 2.4-16. The data is keyed to the first four
transport structures shown in figure 2.4-17 (i.e., (a) through (d)). The capacities are tabulated for

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-122

messages with and without FEC. The data shows the data per slot and total throughput, assuming 100%
slot utilization.

Standard Message (Packed-1 Double Pulse)

Notation:
S = Synchronization Pulse Group
H = Header Pulse Group
D = Data Pulse Group
 = Time Refine Pulse Group

J = Message Jitter
G =Guard
FEC = Forward Error Correction

J S D G

Information BITS per Slot
(Terminal Capacity = Kb/s)

without FECwith FEC

465
(59.5)

225
(25.8)

Packed-4 Single Pulse Message

S H D D D GD

900
(115.2)

1860
(238.0)

H

Packed-2 Single Pulse Message

J S H D G

930
(119.0)

450
(57.6)

D

Packed-2 Double Pulse Message

S H D G

450
(57.6)

930
(119.0)

D

Figure 2.4-16. Time Slot Structures with Data Capacity

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-123

4(
26

)

16
(2

6)

93
(2

6)

32
(1

3)

SYNC
Jitter

HDR DATA

4(
26

)

16
(2

6)

93
(1

3)

93
(1

3)

32
(1

3)

Jitter
SYNC HDR DATA DATA

Link-16 TDMA SLOT
7.8125 ms

(a) Standard Message (Packed-1 Double Pulse)

(b) Packed-2 Single Pulse Message

3.354 ms 4.4585 ms - JITTER

Propagation/Guard

Propagation/Guard

Notation:
a) SYNC - Synchronization Pulse Group
b) HDR - Header Pulse Group
c) - Time Refinement Pulse Group
d) - Interleaved, Data and Header

e) - Interleaved, Data
f) N(26) - N pairs of 13 microsecond pulses
g) M(13) - M single 13 microsecond pulses
h) Sync referred to as 16(26) or 32(13)

4(
26

)

16
(2

6)

93
(2

6)

93
(2

6)

32
(1

3)

SYNC HDR DATA DATA

4(
26

)

16
(2

6)

32
(1

3)

93
(1

3)

93
(1

3)

93
(1

3)

93
(1

3)

SYNC HDR DATA DATA DATA DATA

(c) Packed-2 Double Pulse Message

(d) Packed-4 Single Pulse Message

5.772 ms 2.0405 ms

Propagation/Guard

Propagation/Guard

0.936 ms

4(
26

)

16
(2

6)

32
(1

3)

SYNC HDR

4(
26

)

16
(2

6)

32
(1

3)

SYNC HDR

(e) Round Trip Timing Interrogation (RTTI)

(f) Round Trip Timing Reply (RTTR)

4.275 ms

Propagation/Guard

Propagation/Guard

TRANSPORT STRUCTUES

Figure 2.4-17. Waveform Transport Structures

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-124

2.4.4.1.3 Link-16 Waveform Transport Types (Mode 1 FF)

Figure 2.4-17 shows the many Link-16 waveform types used for transporting message data. Terminology
and graphical notations used in the figure are defined at the bottom of the figure. Graphical shading
identifies the Time Refinement group and groupings for interleaving. The term N(26) refers to N pairs of
13 µs pulses and M(13) refers to M single 13 µs pulses. The term N(26) is used to reference redundant
pulse pairs where redundant symbols are transmitted in adjacent pulse positions. Interleaving of N(26)
symbols keeps the redundant symbols together and interleaves the redundant pairs.

The grouping of interleaved symbols is represented with diagonal lines. The diagonals going from upper
left to lower right signify an interleaving pattern that combines the header with data, while the diagonals
going from lower left to upper right signify an interleaving pattern for only data.

Figure 2.4-17(a) is analogous to the Standard Message in figure 2.4-15(b). The header consists of sixteen
redundant pulse pairs and the data consists three RS[31,15] blocks transmitted as redundant pulse pairs, or
93(26). The 109 (i.e., 16 + 93) pulse pairs are interleaved as pairs. As shown in the subsequent types, the
grouping of three RS[31,15] blocks is referred to by a packing factor.

The Standard Message may alternately be referred to as a packed 1 (P1) message, although it is not
common. The use of redundant and non-redundant symbols is also used to characterize the transport type.
Redundant symbols are referred to as “Double Pulse”, or DP, and non-redundant symbols are referred to
as “Single Pulse”, or SP. Putting it all together, the Standard Message is a P1DP message.

The packing of the P1DP message can be changed to transmit twice the data in the same time, at the cost
of degraded signal-to-noise performance. Figure 2.4-17(b) illustrates the standard length message with
heavier packing and it’s referred to as P2SP (i.e., six RS[31,15] blocks, non-redundant symbols). The
interleaving pattern for the header and first RS block accounts for the mixing of redundant header
symbols with non-redundant data symbols. The signal-to-noise performance of the P2SP is regained by
transmitting redundant data symbols. The additional symbols produce a longer message as shown in
figure 2.4-17(c). This message is referred to as P2DP. Transmission of the P2DP is not jittered.

Data is doubled again by eliminating the redundant data symbols in the P2DP and packing twelve
RS[31,15] blocks in the same time. This message is referred to as the P4SP message and is illustrated in
figure 2.4-17(d).

2.4.4.1.4 Link-16 Time Synchronization (Mode1 FF)
The previous material dealt with the transport mechanism for transmitting data in a TDMA network. The
operation of all randomizing and cryptographic functions is slot, or time dependent. Consequently, it is
imperative that all listening or receiving network members have their randomizing and cryptographic
functions working in synchronism with those of the transmitting member in order to properly receive the
transmitted message.

Time synchronization is achieved in two steps – Coarse Synchronization followed by Fine
Synchronization. Coarse synchronization produces a gross phase adjustment to place an unsynchronized
timebase within the correct TDMA time slot. Coarse synchronization is achieved by setting the
unsynchronized local time to a slot time in the future in which it is known that someone will be
transmitting (e.g. net-entry slot). All randomized parameters are determined for that slot; the receiver is
programmed to listen for the message in that slot and the local timebase is frozen in that slot. Once the
receiver detects the message synchronization preamble (a time dependent PN code), the receiving
terminal checks the message content for consistency. If the message is legitimate, it is known, with a
high degree of certainty, that the value of the locally frozen timebase is equal to system time and the local
timebase is enabled to count time (or time slots). The offset of the local timebase with respect to system
time is essentially equal to the propagation time of the received coarse synchronization message. This
offset is “zeroed” out using the fine synchronization process.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-125

Link-16 fine synchronization can be achieved in either an active or a passive synchronization mode.
Since this Application View deals with the send and receive Use Cases, this material will deal with the
active mode of fine synchronization. In the active mode, the messages in figure 2.4-17(e) and (f) are
utilized. A user transmits a Round Trip Timing (RTT) Request at the start of its assigned RTT slot. A
receiving terminal that is in fine synchronization measures the time of reception of the request relative to
the start of the slot (value R1). The receiving terminal transmits a RTT Reply starting at 4.275 ms in the
same slot. The requesting terminal measures the time of reception of the RTT Reply relative to its local
4.275 ms time mark (value R2). The value ½(R1 – R2) is the synchronization error, or time offset, and
the local time is phase adjusted to offset this error. Once in fine synchronization, the receiving terminal
can measure the range to transmitting terminals and effectively use measurements for the Relative
Navigation function.

2.4.4.1.5 Link-16 Waveform Operations (Mode1 FF)
In this section the process of transmitting (Send Comms) and receiving (Receive Comms) the Link-16
waveform is presented. This information will be used to tie the Link-16 waveform to the hardware and
software class structures. The functional abstractions, or functional flows, shown in figure 2.4-18 and
figure 2.4-19, present the waveform functions relative to the hardware and software class structures. The
left side of the figures suggests the possible hardware classes and the right side of the figure suggests the
possible software classes.

The waveform is represented in terms of a waveform class that inherits from both the hardware and
software class structures. The waveform can then be instantiated in hardware, or in software, whichever
makes sense at the time of implementation. The information presented here is a sample case and does not
imply that it’s unique. As technology advances and offers more or different critical choices, optimal
solutions can change with changing technology.

2.4.4.1.5.1 Send Comms
The details of transmitting the Link-16 waveform is shown in figure 2.4-18. The data to be transported is
collected from the Host. This information, along with the Link-16 network protocol information and the
relative navigation information are processed and formatted for transmission. This data (true for all FF
transmissions) is subjected to a twelve-bit block parity encoding that is used on the receiving side to
detect uncorrected errors from the FEC process. The data with the appended twelve-bit parity is encrypted
by the INFOSEC data encryption process.

The encrypted data is passed from the RED side to the BLACK side for the final data formatting and
signal processing. Header information is symbol encoded (five bits per symbol) in a RS[16,7] encoder
and data symbols (also at five bits per symbol) in a RS[31,15] encoder. The resulting data is interleaved
in the patterns consistent with the selected message transport type (i.e. P1DP, P2SP, P2DP, or P4SP – see
transport types). In Mode 1 the interleaving process is initiated at a “random” starting point in the
interleaving pattern. The value of the starting point is obtained from a randomizing process in the
INFOSEC.

If the transmission had been in response to a Partitioned Variable Mode Relay (a special Link-16 relay
function), the stored encrypted and block encoded data would have been injected at this point by the PVM
Message Relay Storage. The PVM Relay data would then be processed by the subsequent processes in
the same manner as the normal transmission. However, the Send Comms Use Case deals with a normal
transmission and the PVM case is not considered in this example.

The interleaved data is appended to eight time refinement symbols (five-bit binary zero) and mapped to
the thirty-two bit CCSK codes. The resulting codes are added modulo 2, chip by chip, with a PN stream
derived from the INFOSEC (TRANSEC operation). The chip encrypted stream is appended to the PN
derived Synchronization Preamble Codes, and processed in real-time to modulate the L-Band carrier
using continuous phase shift modulation (CPSM).

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-126

Along with the flow of data to the modulation process, the synchronization (Sync) preamble transmission
frequencies and data transmission frequencies are supplied to set the carrier frequency for each RF pulse.
These frequencies are computed ahead of time (end of previous slot) from PN stream generated by a
randomizing INFOSEC process and buffered. The codes are supplied to the frequency determining
elements in step with the synchronization preamble codes and spread data symbols. The resulting signals
are amplified and supplied to one antenna for single antenna installations, or amplified and split for dual
antenna installations.

2.4.4.1.5.2 RTT Transmission

A transmitting terminal can transmit either a RTT Request, or a RTT Reply. In an assigned RTT slot for
the transmitting terminal, the Networking, Rel. Nav., and Message Formatting will issue data for the RTT
Request. The data will be FEC coded in the RS[16,7] encoder and join the previous flow for the Data
Symbol CCSK Encoding.

A RTT Reply is transmitted in response to a detected RTT Request (part of Receive Comms). The RTT
Reply is formatted with the measured time of arrival for the detected request and processed as above.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-127

Figure 2.4-18. Transmit Functional Abstraction

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-128

2.4.4.1.5.3 Receive Comms

The message reception process is triggered by the cross correlation of received frequency and code of
multiple RF pulses (synchronization preamble) against expected frequency and code of multiple RF
pulses. As described under Send Comms (see figure 2.4-15), the synchronization preamble consists of
thirty-two 6.4 µs RF pulses spaced by 13 µs., each coded with a thirty-two chip PN sequence. The thirty-
two pulses are transmitted using eight pseudo randomly selected frequencies. Within the preamble, eight
groups of four non-adjacent pulses will be transmitted at one of the eight frequencies. Pulse frequencies
and pulse PN codes are time-slot dependent and are determined ahead of time (typically in the latter half
of the previous slot) from the output of a randomizing process in the INFOSEC.

The example implementation in figure 2.4-19 depicts the classical approach in which each of several
receivers is tuned to one of the expected pulse frequencies. An optimal solution requires the processing
of eight frequencies, with a unique pattern of four pulses on each frequency. Analysis and test results
have demonstrated that the performance of a sub-optimal implementation using two to four receivers is
adequate. Some platforms may require dual antennas (e.g., top and bottom) and use two to four receivers
per antenna.

The received RF energy is correlated with the synchronization codes until the unique synchronization
pattern is detected. In dual antenna installations, this process is performed on each antenna and logically
processed for dual detected patterns (i.e., one on each antenna). Typically, the first detected group is
accepted and the rest of the message is processed from the antenna that provided the detected
synchronization. In cases of possible timing ambiguity, the antenna with the stronger signal is selected
for processing the rest of the message.

When the synchronization preamble is detected, the receive clock is phase adjusted with respect to the
time-of-arrival (TOA) of the detected preamble in order to accurately separate and detect the individual
received chips. The received TRANSEC encrypted chips are added modulo 2, chip by chip, to a replica
of the PN stream used during transmission. Groups of thirty-two chip symbols are de-spread to form
five-bit data symbols and de-interleaved to reassemble the initial RS code block containing the message
header.

The header is RS decoded to identify the message type and determine the total number of pulses in the
incoming message. Once the message type is known, the complete message may be de-interleaved and
RS decoded. If the received message had been a PVM relay message, the complete message would be
stored, without further processing, awaiting the command to retransmit the data in a subsequent slot.

The five bit data symbols are reconstituted in a continuous serial data stream, decrypted and moved from
the BLACK side to the RED side. The twelve-bit parity is then checked to determine if there had been an
uncorrected RS error. The appropriate data is then used for network processing, relative navigation,
and/or parsed and distributed to the Host.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-129

Figure 2.4-19. Receive Functional Abstraction

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-130

2.4.4.1.5.4 RTT Reception

A receiving terminal can receive either a RTT Request or a RTT Reply. If the terminal had transmitted a
RTT Request at the start of the slot, it will be expecting the reply in the latter half of the slot. In this case,
the received reply, after CCSK decoding, is RS decoded and used to determine and correct the local time
offset.

The receiving terminal does not know in which slot it will be receiving a RTT Request; consequently, all
received messages are tested for a RTT Request. The test is performed on the sixteen sequential symbols
following the eight time refinement symbols, without de-interleaving, concurrently with the processing of
a normal message. The sixteen symbols are RS decoded and checked for the known pattern of a RTT
Request. If the RTT Request is detected, normal message processing is aborted and the RTT Reply is
formatted and prepared for transmission at 4.275 ms in the same slot.

2.4.4.2 Waveform Class Structure Charts
The class structure used to develop the Link-16 receive and transmit sequence diagrams inherits its
interface attributes from the JCF IDL provided by the software IPT (see figure 2.4-20). The highlighted
classes from the Software Class Resources are used in implementing the Link-16 waveform. This
provides the means by which each instantiated object used to develop a waveform application will
communicate with other objects using a standard interface protocol. The use of a standard method of
communication enables developers to implement functionality on various hardware platforms without the
need for the detailed electrical interface.

2.4.4.3 Waveform Sequence Charts

figure 2.4-22), derived from the Rational Rose software tool, are based on the Link-16 functional flow
diagrams and the JTRS waveform class definitions. These diagrams are representative of the
transmission and reception of Fixed Format messages in Mode 1. The sequencing details of the real-time
operations are very intricate and require multiple repetitions of data processing for each of the transmitted
pulses, ranging from 258 to 444 pulses.

To develop the sequence diagrams, each link-16 functional block was defined as an object, and these
objects were then correlated to associated waveform classes. The interactions between objects were
linked using the existing methods defined for the related classes. Link-16 object control and message
flow was then determined following the functional flow diagram. The Link-16 Transmit and Receive
waveform functionality are detailed in the software sequence diagrams. Sequencing for the message
transmission parallels the flow described in 2.4.4.1.5.1 and sequencing for message reception parallels the
flow in 2.4.4.1.5.3.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-131

Resource

UtilityResourceAccessResourceNetworkResourceLinkResource INFOSECResourceModemResource

RepeaterResource

Retransmit
ControlModem

Waveform Link
Resource

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
Selftest

Bridge Resource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

INFOSEC Agent
Resource

TranslateINFOSEC

INFOSEC Domain
Resource

Encrypt
Decrypt
Authenticate
Fill
Bypass
GenerateTRANSEC
TimeSlotBuffer
Selftest

Router Resource

TranslateAddress
Route
TransmitMessage
ReceiveMessage
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

Waveform Network
Resource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQual
AnalyzeNetworkQual
ManageVirtualCircuit
AdaptMessage
ManageRF
Selftest

Serial Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Ethernet Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Audio Resource

ConfigurePort
PTT
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
Selftest

Gateway Resource

TranslateMessage
TranslateVoice
TranslateVideo

Msg Filter Resource

TypeFIlter
GeographicFIlter
PriorityFilter

Sit Aware Resource

CollectPositionReports
ConsolidatePosition
 Reports
DisseminatePosition
 Reports

Host Agent Resource

TranslateHost

Figure Application D-6. Class Structure for Link-16.

Waveform RF
Resource

PA
LNA
UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
Selftest

Waveform Modem
Resource

Modulator
Demodulator
Interleave
De-Interleave
FEC_Encode
FEC_Decode
Filter
Spread
Despread
Synchronize
Track
Correlate
Acquire
AcquirePacket
SchedulePacket
TimeStamp
TRANSEC
D/A Converter
A/D Converter
TDMATimer
Selftest

Modem Agent
Resource

TranslateModem

= Classes that apply to Link-16
Key:

Figure 2.4-20. Class Structure for Link-16

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-132

MSRC-5000SRD
Appendix C

C-A2-133

Host Data :
HostAgent

HCI

Network Control : Data Encrypt
:Encryptor

Radom Code
:Generate

R/S X,Y : FEC_
Encode

Symbol
InterleavingInterleaver

CCSK Encoding
: Spread

Xmit Encrypt :
TranSec

DatatoBB :
CPSM_Mod

BBtoRF : Up
Convert

Frequency
Source :

Amplifier :
Amplifier

TranSec
Variables :

Waveform
Control :

Parity
Encoding :

Message
Format :

CryptoBypass
:InfoSecBypass

Error Log :
Logger

Net/Mess
Timing :

Data/Sync
Freq: Control

Time Refine
Symbols :

Build Tans
Message :
Packetize

Build Message
: Packetize

Red Side
Processing

JTIDS
TRANSMIT

INFOSEC Modem RF

1: processMsg(in MessageType)

12: processMsg(in
MessageType)

2: logData(in string, in string, in unsigned short)

3: processMsg(in MessageType)

5: configure(in DataType)

7: configure(in DataType)

13: processMsg(in
MessageType) 14: processMsg(in MessageType)

6: configure(in DataType)

10: processMsg(in
MessageType)

19: processMsg(in
MessageType)

11: processMsg(in MessageType)

20: processMsg(in
MessageType)

21: processMsg(in
MessageType)

8: processMsg(in MessageType)
9: configure(in DataType)

22: processMsg(in MessageType)

23: processMsg(in
MessageType)

26: processMsg(in MessageType)

15: configure(in DataType)

16: processMsg(in MessageType)

27: processMsg(in MessageType)

17: configure(in DataType)

18: configure(in DataType)

28: processMsg(in MessageType)

29: processMsg(in MessageType)

30: processMsg(in MessageType)

24: configure(in DataType)

25: processMsg(in
MessageType)

31: processMsg(in MessageType)

4: configure(in DataType)

TranslateMessage

Figure 2.4-21. Transmit Sequence Diagram

C-A2-133/(C-A2-134 blank)Originally Published 7 May 1999

MSRC-5000SRD
Appendix C

C-A2-134

MSRC-5000SRD
Appendix C

C-A2-135

RF Modem InfoSec Red Side Processor HCI

Receiver
: LNA

Down Convert :
DownConvert

Freq Tuner
:

CPSM Detect :
DeModulator

Sync Detect
: Correlator

Preamble Codes :
Packetize

Data/Sync Freq :
ControlModem

Dat Decrypt :
Decryptor

Radom Code
: Generate

Data Out :
Translate

Crypto Bypass
: InfoSec

Deinterleaver :
DeInterleaver

Fwd Error Correct
: FEC_Decode

TranSec Variable Compute
: RoutePacket

Net/Mess Timing :
Synchronize

CCSK Decode :
DeSpread

Symbol Decrypt
: TranSec

Clock Adjust :
Synchronize

Parsing & Networking :
RoutePacket

TimeBase Adjust :
Synchronize

Error Detection :
Packetize

13: processMsg(in MessageType)

11: processMsg(in MessageType)

14: ProcessMessage()

15: processMsg(in MessageType)

7: configure(in DataType)

10: configure(in DataType)

24: processMsg(in MessageType)

23: processMsg(in MessageType)

20: processMsg()

21: processMsg(in MessageType)

31: processMsg(in MessageType)

12: setAdminState(in AdminType)

1: configure(in DataType)

2: configure(in DataType)

9: configure(in DataType)

3: processMsg(in MessageType)
4: configure(in DataType)

5: configure(in DataType)

6: configure(in DataType)

8: configure(in DataType)

The Sync Detector accepts inputs from
multiple receive channels. The number
of receive channels used is platform
dependent.

16: processMsg(in MessageType)

18: processMsg(in MessageType)

19: processMsg(in MessageType)

22: start()

17: processMsg(in MessageType)

27: processMsg(in MessageType)

25: processMsg(in MessageType)
26: processMsg(in MessageType)

28: processMsg(in MessageType)
29: processMsg(in MessageType)

30: processMsg(in MessageType)

Header Data

Message
Data

Figure 2.4-22. Receive Sequence Diagram

C-A2-135/(C-A2-136 blank)Originally Published 7 May 1999

MSRC-5000SRD
Appendix C

C-A2-136

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-137

2.4.4.4 Summary Allocation of the Waveform to HW and SW Objects

In representing the Link-16 waveform for the Application View, an assignment was made between a
representative Link-16 waveform class structure and the Hardware and Software Class structures. Table
2.4-VII lists the three class structures for the Link-16 Fixed Format, Mode 1, transmission and reception.

Functional instantiation within the Hardware or Software Class Structure will be highly dependent on the
state of technology. Platform interface functions (e.g., RF to the antennas, critical line matching
interfaces, analog voice circuits to the Host, analog intercom circuits to the Host, etc.) will most probably
be dominated by hardware solutions. Analog hardware solutions will also dominate for functions
providing power conversion and primary frequency sources. Other examples may also be dominated by a
clear-cut hardware solution.

As technology continues to transcend frequency barriers, increasingly, analog processing is taking
advantage of the superior capabilities found using modeled processes in the digital domain. In addition,
digital solutions once requiring dedicated hardware are taking advantage of the faster and faster digital
signal processor (DSP) and the general-purpose microprocessor. Still resisting this transition are
functions dealing with low latency and/or critical timing. However, faster devices like the field
programmable gate array (FPGA) enable the critical timing functions to be implemented in non-dedicated
hardware that allows different functionality as operating conditions may warrant.

Software and hardware are following similar programming methodologies that appear to be coming
together to take advantage of their similarities, rather than following separate paths within separate
philosophical design worlds. An increasing portion of the hardware implementers’ design paradigm
involves the use of a hardware description language (e.g., VHDL) and time-proven programming
techniques. Just as compiled software produces code that may be stored as binary bit-maps for selective
execution on a DSP or microprocessor, complied VHDL code, in the form of binary bit-maps, may be
selectively executed in a FPGA. Many functions may be interpreted in terms of their “digital”
dependence as hardware implementations, when in fact they are quite similar to the historically
recognized software solutions.

Table 2.4-VII. Class Structures

WAVEFORM CLASSES HARDWARE CLASSES SOFTWARE CLASSES
Transmit
Host Data : HostAgebt HCI Access Utility Resource
Network Control :
TranslateMessage

RED Side Processing Network Resource

Message Format : RED Side Processing Network Resource
Error Log : Logger RED Side Processing Network Resource
Parity Encoding : RED Side Processing Network Resource

Crypto Bypass : InfoSecBypass INFOSEC INFOSEC Resource
Data Encrypt : Encryptor INFOSEC INFOSEC Resource
Random Code : Generate INFOSEC INFOSEC Resource

TRANSEC Variables : Modem Modem Resource
Waveform Control : Modem Modem Resource
R/S X.Y : FEC Encode Modem Modem Resource
Build Message : Packetize Modem Modem Resource
Symbol Interleaving : Interleaver Modem Modem Resource

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-138

WAVEFORM CLASSES HARDWARE CLASSES SOFTWARE CLASSES
Time Refine Symbols : Modem Modem Resource
CCSK Encoding : Spread Modem Modem Resource
Xmit Encrypt : TranSec Modem Modem Resource
Build TransMessage : Packetize Modem Modem Resource
Data/Sync Freq : Control Modem Modem Resource
Net/Mess : Timing Modem Link Resource
CPSM Generate : Modulator Modem Modem Resource
Up Conversion : UpConvert RF RF Resource
Frequency Source : RF RF Resource
Amplifier : PA RF RF Resource
Receive
Receiver : LNA RF RF Resource
Down Convert : DownConvert RF RF Resource

Freq Tuner : RF RF Resource
CPSM Detect : DeModulator RF Modem Resource
Sync Detect : Correlator Modem Modem Resource
Preamble Code : Packetize Modem Modem Resource
Data Sync Freq : ControlModem Modem Modem Resource
Clock Adjust : Synchronize Modem Modem Resource
Symbol Decrypt : TranSec Modem Modem Resource
CCSK Decode : DeSpread Modem Modem Resource
Deinterleaver : Deinterleaver Modem Modem Resource
Fwd Error Correct : FECDeCode Modem Modem Resource
TranSec Variable Compute :
RoutePacket

Modem Modem Resource

Net/Mess Timing : Synchroize Modem Modem Resource
Det Decrypt : Decryptor INFOSEC INFOSEC Resource
Random Code : Generate INFOSEC INFOSEC Resource
Crypto Bypass : InfoSecBypass INFOSEC INFOSEC Resource
Error Detection : Packetize RED Side Processing Network Resource
TimeBase Adjust : Synchronize RED Side Processing Network Resource
Parsing & Networking :
RoutePacket

RED Side Processing Network Resource

Data Out : Translate HCI Access Utility Resource

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-139

2.4.5 Soldier Phone

Soldier Phone is a system that provides peer-to-peer, multi-hop, and multimedia (voice, data, and video)
services to users operating in dynamic environments. Soldier Phone works with half-duplex transceivers
over multiple channels using LOS propagation modes. Designed to operate without intervention by a
user or controller, each Soldier Phone is a peer-to-peer node in a distributed communications network.
The network does not require an infrastructure for its operation; it develops its own. Each node is capable
of transmitting or receiving multimedia information as well as acting as a relay point for communications
between non-neighbor nodes. Multiple traffic types can be communicated simultaneously on any link
between two nodes. Traffic services include datagram and virtual circuit services. Multiple Qualities of
Service (QoS) are supported ranging from best effort to reserved capacity and including priority
processing. Each node monitors its local RF environment and traffic requirements and exchanges quality
and capacity information within its local area. The nodes then adapt the RF spectrum (amount of rf
spectrum and time on a particular channel) as well as transmission parameters like data rate to
dynamically adapt to changing connectivity and traffic to provide the best system wide performance in a
local area. The Soldier Phone provides the advantages of spatial frequency reuse similar to those of
commercial cellular telephones without needing pre-engineering or fixed infrastructure. The Soldier
Phone has a modular architecture with well-defined APIs between the modules. The APIs are similar in
function to the NAPIs called out in the JTRS Internal Networking Architecture.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-140

2.4.5.1 Functional Representation of Soldier Phone

Figure 2.4-23 shows a generic functional representation of the Soldier Phone networking. The
architecture will vary slightly from program to program since each program has different requirements.
User traffic comes in via the Digital I/Os or the Vocoders. The traffic goes through the User
Convergence and/or IP where the appropriate Quality of Service parameter values are set. User packets
go to Net switching, via the Soldier Phone Network API, where they are broken into cells and switched to
Channel Access. Channel Access implements Orthogonal Domain Multiple Access (ODMA) which
divides the RF spectrum into multiple slots through orthogonal channels and time. (A channel can be
defined through FDMA and/or CDMA.) Each Soldier Phone can transmit or receive in only one slot at a
time. Channel Access combines one or more cells for one or more intended receivers into a single over-
the-air packet. The over-the-air packet is sent to the Modem via the Soldier Phone Radio API. The
Modem typically implements multiple data rates and modulation schemes. The user can signal for circuit
based services via a local Keypad/Display or over a remote Digital Interface, such as would be used in a
vehicular remote control head. Net Management implements Routing Management, Virtual Circuit
Management, Directory Management, and Status Monitoring such as SNMP. RF management adapts the
slot allocations to satisfy the dynamic connectivity and traffic requirements, adapts the modem parameters
to work across dynamic link conditions, and implements a distributed time synchronization algorithm.

2.4.5.2 Class Structure for Soldier Phone

Figure 2.4-24 identifies those elements of the Software Class Structure used by Soldier Phone application.
The Waveform Modem Resource and TDMATimer are in the Modem. The LinkResource,
NetworkResource and AccessResource software are implemented in C/C++ as a structured design using
objects.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-141

Clear
Packets

Remote Signaling & Status

Signaling & Status

RF
Allocation
RequestsTime Adjust

Alarms and Signaling Tones

Audio
Blocks

Data Packets

Audio
Packets

User
Packets

Keyfill & Zeroize

Bootstraps

Time

Encrypted
Packets &

Bypass

CellsOver-
the-Air
Packet

TRANSEC Stream

I/Q,
Control/
Status

RF

Antenna

R
F Front End

M
O

D
EM

IN
FO

SEC

C
hannel Access

N
et Sw

itching

C
rypto

Interface

TD
M

A Tim
er

IP U
ser

C
onvergence Vocoder(s)

W
ireline

N
etw

ork
I/O

N
et M

anagem
ent

R
F M

anagem
ent

Keyboard
D

isplay
D

igital
I/O

(s)

Figure 2.4-23. Soldier Phone Functional Representation View

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-142 Modulator

Demodulator
Interleave
De-Interleave
FEC_Encode
FEC_Decode
Filter
Spread
Despread
Synchronize
Track
Correlate
Acquire
AcquirePacket
SchedulePacket
TimeStamp
TRANSEC
D/A Converter
A/D Converter
Selftest
TDMATimer

Resource

UtilityResourceAccessResourceNetworkResourceLinkResource INFOSECResourceModemResource

RepeaterResource

Retransmit
ControlModem

Waveform Link
Resource

Bridge Resource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

INFOSEC Agent
Resource

TranslateINFOSEC

INFOSEC Domain
Resource

Router Resource

Waveform Network
Resource

Serial Resource

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Ethernet Resource

Audio Resource

Gateway Resource

TranslateMessage
TranslateVoice
TranslateVideo

Msg Filter Resource

TypeFIlter
GeographicFIlter
PriorityFilter

Sit Aware Resource

CollectPositionReports
ConsolidatePosition
 Reports
DisseminatePosition
 Reports

Host Agent Resource

TranslateHost

Waveform RF
Resource

Waveform Modem
Resource

Modem Agent
Resource

TranslateModem

PA
LNA
UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
Selftest

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
Selftest

Encrypt
Decrypt
Authenticate
Fill
Bypass
GenerateTRANSEC
TimeSlotBuffer
Selftest

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetwork

Quality
AnalyzeNetwork

Quality
ManageVirtualCircuit
AdaptMessage
ManageRF
Selftest

TranslateAddress
Route
TransmitMessage
ReceiveMessage
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

ConfigurePort
PTT
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
Selftest

ConfigurePort
TransmitMessage
ReceiveMessage
Selftest

Figure 2.4-24. Soldier Phone Class Structure

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-143

2.4.5.3 Sequence Diagrams for Soldier Phone

Figure 2.4-25 through figure 2.4-27 trace the use case of Send & Receive Comms Traffic. Although the
Soldier Phone can support multiple types of media (voice, video, and data), this example traces the flow
of an Ethernet packet that enters the network at one Soldier Phone node (figure 2.4-25) and is relayed
through a second node (figure 2.4-26) before it finally arrives at its destination (figure 2.4-27).

In figure 2.4-25, the packet comes into the Router Resource from the Ethernet Resource. The Router
Resource determines that it should route the packet on and sends it to the INFOSECResource where it is
encrypted and sent on to RouteMessage. RouteMessage breaks the packet up into cells and switches them
to the appropriate SchedulePacket transmit queue based upon MaintainRoutingTable. At the appropriate
time, SchedulePacket looks into its slot allocation table and sends a slot boundary command to the
Waveform Modem Resource. The Waveform Modem Resource calls SchedulePacket back at the
appropriate time to transmit the packet. The packet is buffered by the Waveform Modem Resource up to
one slot ahead to minimize the strict timing constraints imposed by TDMA. The TDMATimer notifies
the Waveform Modem Resource at the appropriate slot time. The Waveform Modem Resource sends the
time to the INFOSECResource to obtain the TRANSEC stream, which it uses to pseudo-randomly move
through the slots and also to bulk enrypt the entire over-the-air transmission. The Waveform Modem
Resource interleaves and FEC encodes the packet and transmits it to the RF as digital I/Q data.

In figure 2.4-26, the SchedulePacket looks into its slot allocation table and sends a slot boundary
command to the Waveform Modem Resource. The Waveform Modem Resource calls SchedulePacket
back at the appropriate time to receive the packet. SchedulePacket tells the Waveform Modem Resource
one slot ahead when and what slot to use to receive. The TDMATimer notifies the Waveform Modem
Resource at the appropriate slot time and the Waveform Modem Resource obtains the TRANSEC stream
from the INFOSECResource. The Waveform Modem Resource tunes to the appropriate pseudo-
randomly selected channel and demodulates the received digital I/Q data. The received over-the-air
packet is sent to SchedulePacket which sends the link quality information to ManageRF so that it can
adapt the radio parameters. Routing information is also updated based upon overheard traffic. Cells that
were intended for reception by this Soldier Phone are forwarded to RouteMessage while other cells are
discarded. RouteMessage routes the datagram cells back to SchedulePacket for relay on to the
destination. (The relay transmission proceeds identically to the first transmission.)

In figure 2.4-27, the reception proceeds identically to the relaying Soldier Phone until the cells get to
RouteMessage. RouteMessage determines that the cells are for this Soldier Phone and keeps the cells
until it can reassemble the entire encrypted packet. Once reassembled, the encrypted packet is sent to the
INFOSECResource and hence on to Router Resource and out the Ethernet Resource.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-144

RF W aveform
M odem Resource

TDM ATim er SchedulePacket RouteM essage M anageRF M aintain
RoutingTable

INFO SEC Dom ain
Resource

Router
Resource

Ethernet
Resource

4:route

5:getNextNodeIn

10:Tim eSlot

11:TranSec

1:Enet

12:Tune

RF M odem Black Processor INFO SEC Red Processor

2:Encryp

3:txPkt

6:put

7:Slot

8:Tx

9:Tim e

13:Tx I/Q

Figure 2.4-25. Solder Phone Sequence View, Transmission of Received Ethernet Packet

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-145

SchedulePacket RouteM essage M anageRF M aintain
RoutingTable

INFO SEC Dom ain
Resource

Router
Resource

Ethernet
Resource

TDM ATim erRF W aveform
M odem Resource

1:SlotBoundary (Tim e)

2:RxPkt(Tim e)

3:Tim e

4:Tim eSlot

5:TranSec Stream

8:RadioRxd

14:SlotBoundary(Tim e)

15:TxPkt(Tim e)

9:ProcessTrafficQ lty

10:updateTierDataToSource

RF M odem Black Processor INFO SEC

6:Tune

7:Rx I/Q

11:relayDatagram Hdr

12:getNextNodeInRoute

13:putTxQ

16:Tim e

17:Tim eSlot

18:TranSecStream
19:Tune

20:Tx I/Q

Red Processor

Figure 2.4-26. Solder Phone Sequence View, Transmission of Relayed Ethernet Packet

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-146

SchedulePacket RouteM essage M anageRF M aintain
RoutingTable

Router
Resource

Ethernet
Resource

INFO SEC Dom ain
Resource

TDM ATim erRF W aveform M odem
Resource

3:Tim e

4:Tim e

5:TranSec

8:RadioRxd

15:Ethernet

6:Tune

RF M odem Black Processor INFO SEC Red Processor

1:SlotBoundary

2:RxPkt

7:Rx I/Q

9:ProcessTraffic

10:updateTierDataTo

11:sendHdrToLocal

12:rxCell

13:Decypt
14:rxPkt

Figure 2.4-27. Solder Phone Sequence View, Reception of Relayed Ethernet Packet

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-147

2.4.5.4 Hardware/Software Allocations for Soldier Phone

Table 2.4-VIII shows how the Soldier Phone waveform/network can be allocated to the JTRS
Architecture.

Table 2.4-VIII. Soldier Phone Allocations to the JTRS Architecture

Soldier Phone Object JTRS Hardware
Classes JTRS Software Classes

RF Front End RFModule Not Applicable
Modem ModemModule ModemResource: Waveform Modem Resource
TDMA Timer ModemModule ModemResource: Waveform Modem Resource:

TDMATimer
Channel Access ProcessorModule:

Black
LinkResource: Waveform Link Resource:
SchedulePacket

Net Switching ProcessorModule:
Black

NetworkResource: Waveform Network -
Resource: Route Message

RF Management ProcessorModule:
Black

NetworkResource: Waveform Network -
Resource: ManageRF

Net Management ProcessorModule:
Black

NetworkResource: Waveform Network -
Resource: ManageVirtualCircuit
NetworkResource: Waveform Network -
Resource: MaintainRoutingTable

INFOSEC INFOSECModule INFOSECResource: INFOSEC Domain
Resource

IP ProcessorModule: Red NetworkResource: Router Resource
User Convergence ProcessorModule: Red NetworkResource: Router Resource
Crypto Interface I/Omodule: Red INFOSECResource: INFOSEC Domain

Resource: Fill
Wire Network I/O I/Omodule: Red AccessResource: Ethernet Resource
Vocoder(s) I/Omodule: Red AccessResource: Audio Resource
Keypad/Display I/Omodule: Black AccessResource: Serial Resource
Digital I/Os I/Omodule: Black AccessResource: Serial Resource

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-148

2.5 NETWORKING VIEW

2.5.1 Introduction

2.5.1.1 JTRS ORD Networking Categories

The JTRS ORD includes three distinct, but related, categories of networking requirement:

1. JTRS Networking. The function that provides communications capability beyond any
current military network and approaches the functionality of the commercial Internet.
Features include:

• Data, Voice, and Video

• Support for multi-thousands of stations

• Addressing via number, name, role, and geographic position

• Point to point, multi-point, and broadcast communications.

2. JTRS Radio. The terminal that:

• Supports the JTRS Networking Architecture

• Provides physical, protocol, applications, and data translations as required to allow
existing legacy networks to participate in a Joint Services Inter-network

• Allows mix and match configurations of Network interfaces as required or desired

• Allows the adoption of new, as yet undefined, Network Technologies

• Leverages off of the commercial market.

3. Joint Services Inter-networking. The function that provides interoperability with legacy
systems and across multiple service domains, platforms and communications media.

The ORD definition of a JTRS Radio (item 2 above) encompasses functional and performance
requirements that are internal to a JTRS node and are covered in Section 2.5.2: JTRS Network
Architecture: Internal Node View. The JTRS Networking functionality and the Joint Services Inter-
networking function (items 1 and 3 above) are covered in Section 2.5.3: JTRS Network Architecture:
External System View. Figure 2.5-1 illustrates the relationship between the Internal Node View and the
External System View.

2.5.1.1.1 Internal Node View

From the inside, the JTRS networking functions are viewed with an object-oriented design consisting of
functions derived from the base Resource class of the Software Architecture. There are subclasses of
networking resources specific to waveform implementation, subclasses that inter-network, and subclasses
used to access the JTRS network. The network resources that are utilized in defining a waveform are:

• Link Resource

• Network Resource

O
riginally Published 7 M

ay 1999
C

-A
2-149

M
SR

C
-5000SR

D
A

ppendix C

2.5-1

JTRS
Node

JTRS
Node

JTRS
Node

External System View
•Standard Network Protocol
•Repeaters, Bridges, Gateways

Internal Node View
• Mapping of protocols
 to resources
• NAPIs

• Open
• Object Oriented
• Standard APIs
• Standards Based
• Plug and Play

• Legacy Interoperation
• Standard Net Architecture
• Mobility Support
• Scalable to Large Net
• Flexible Deployment
• JTR protocols

JTRS
Node

Concept Model:
Transport Nets for
Backbone, Access Nets for
Subscriber Interface, and
JTRS Core Network Using
Common Formats and
Protocols

Protocol Architecture:
Core Network is IP with
repeaters, bridges, routers,
and gateways

Concept Model:
Object oriented design of the
networking resources and
interfaces

Protocol Architecture:
Waveform and internetwork
resources are subclasses of
the modem, link, network,
and access resources

ORD

Resource

ModemResource

Modem NAPI

INFOSECDomainResource

INFOSECResource

Waveform
ModemResource

EthernetResource AudioResource

SerialResource

WirelineResource

are
example
types of

SitAwareResourceGateway

MsgFilterResource

UtilityResource

are
example
types of

Bridge

LinkResource

Link NAPI

Waveform
LinkResource

Repeater

NetworkResource

Network NAPI

Waveform
NetworkResource

Router

Transport Nets

JTRS

JTRS

Access
Net

JTRS
Net Core

OSI Layers
7 - Application
6 - Presentation
5 - Session
4 - Transport

3
- N

et
w

or
k

2 - Link

1 - Physical

3B Inter-
network

3A
Sub-

network

RF RF

Repeater
Modem Modem

Bridge

Link Link

Router

Subnet Subnet

Router

Network Network

Gateway

UtilityUtility

Data Flow

Access
Net

Access
Net

Access
Net

JTRS

Figure 2.5-1. JTRS Network View, External System and Internal Node Architectures

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-150

All protocols specific to a waveform become attributes of the two resources independent of the mapping
of the objects to the RED/BLACK boundary. Link resources can reside on the BLACK side of the
boundary or on the RED side. Network resources can also reside on the RED side of the boundary or on
the BLACK side. The network resources that are utilized in defining the inter-network subclasses are:

• Repeater (derived from modem resource)

• Bridge (derived from link resource)

• Router (derived from network resource)

• Gateway (derived from utility resource).

Three Network Application Program Interfaces (NAPIs) are common within JTRS for all networks and
waveforms: the modem, link, and network NAPIs. These are the APIs evolving under the GloMo
program (The term NAPI is used to distinguish JTRS APIs from more generic use). When a protocol
needs to interface with a modem, it uses the primitives associated with the modem NAPI. The same
analogy applies to interfaces with the link and network resources. All of the NAPIs are derived from the
core Packet API and follow the construct of commands, signals, and variables (e.g., get, set, increment).

2.5.1.1.2 External System View

From the outside, the JTRS is viewed as a network of nodes interconnected with a set of repeaters (e.g.,
“bit-pipe” retransmissions), bridges (e.g., SINCGARS/HAVEQUICK voice bridge), routers (e.g., IP
forwarding), and gateways (e.g., JVMF/Link 16). This “Inter-network” provides the connectivity
between JTRS nodes using standard IP routing, connectivity with subscribers via access nets (e.g.,
Ethernet and RS-422), and connectivity with legacy nets and host systems. The protocol architecture
follows the Open System Interconnection (OSI) model with:

• Physical layer interconnect with a repeater function

• Link layer interconnect with a bridge function

• Layer 3 interconnect with standard IP forwarding

• Upper layer interconnections with gateways.

2.5.1.2 Terminology

Many of the terms associated with networking are vaguely defined and have different meanings
depending upon perspective and experience. To avoid confusion over semantics, the following terms are
used according to the definitions given below:

• Host - Information terminal. Generally connects to a single sub-network. Examples; PC,
ABCS Workstation, Link-11 Tactical Data System terminal.

• Sub-network – Direct connection information transfer media. Consists of a common Layer 2
protocol and in more sophisticated sub-networks also has a common Intranet, or layer 3A
protocol. Examples; Ethernet, Link 16, EPLRS.

• Network – System of sub-networks tied together via switches or Routers. Consists of
multiple Layer 1 and Layer 2 protocols, but shares a common Layer 3B protocol. Example,
any IP Network containing both local area and wide area sub-networks or an ISDN network.

• Inter-network – System of sub-networks tied together via Repeaters, Bridges, Multi-Protocol
Routers or Gateways which will provide format translations as required to allow Inter-
operability between otherwise incompatible sub-networks.

Figure 2.5-2 shows a diagram of the network hierarchy of these definitions.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-151

Sub-Network
(SINCGARS
 188-220B)

 Sub-Network
(PTT Voice
 Net)

Sub-Network
 (Ethernet)

Inter-Network

Host

Network
 (IP)

Network
 (ISDN)

Host

Figure 2.5-2. JTRS Networking Hierarchy

2.5.1.3 Categories of JTRS Radio Inter-operation
The different categories of inter-operability are outlined below based upon the ISO Model. It is easy to
envision multiple levels of inter-operability within the same JTRS platform on a waveform by waveform
basis.

2.5.1.3.1 Layer 1 Inter-operability

JTRS provides a compatible physical interface, including the signaling interface, but no higher layer
processing. This level of interoperability is adequate for a simple bit by bit bridging or relay operation
between two interfaces.

2.5.1.3.2 Layer 2 Inter-operability
JTRS provides link layer processing over similar and different physical interfaces. This level of
interoperability is adequate for allowing the JTRS Network to be used as transport or allowing the JTRS
to use another network as transport. Intelligent routing or switching decisions would be limited to local
layer 2 routing.

2.5.1.3.3 Layer 3 Inter-operability
JTRS provides network layer address processing interoperability. By definition, the JTRS Network and
the networks being inter-operated with are sub-networks of the same Inter-network. At this level,
intelligent switching and routing decisions can be made end to end.

2.5.1.3.4 Host Level Inter-operability (Layers 4 – 7)
Embedded JTRS applications can exchange information with hosts attached to the network being inter-
operated with. A typical example of this would be a handheld JTRS platform, which contains an
embedded Situation Awareness (SA) application exchanging SA updates with a vehicular platform in an
arbitrary external sub-network. In this example, JTRS provides message payload translations (e.g.,
CVSD to MELP) to allow two otherwise incompatible hosts to communicate.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-152

2.5.2 JTRS Networking Architecture: Internal Node View

The JTRS Networking Architecture, in conjunction with the JCF software, supports the implementation
of the wide variety of legacy and emerging waveforms/protocols. The Networking Resource classes
within the JCF are defined to implement the services of layers 1, 2, 3, and 4 through 7 of the OSI
Networking Protocol Model4. Sub-classes are defined to further distinguish between networking that is
waveform specific and networking that is not waveform specific.

NAPIs provide standard interfaces between the Networking Resources. NAPIs are extensions to the JCF
base class interfaces that are inherited from the Resource Object. NAPIs support plug-and-play of
different network resource instantiations. NAPIs will evolve as technology evolves and will also allow
vendors to provide value-added features that distinguish themselves from their competitors (a key
requirement for commercial acceptance of the NAPIs).

There are three key elements of the OSI Networking Protocol Model: Services, Interfaces, and Protocols.
Each OSI protocol layer performs some services for the layer above it. The service definition tells what
the layer does, not how entities above it access it or how the layer works. A layer’s interface tells the
process above it how to access it and specifies what the parameters are, and what results to expect. It, too,
says nothing about how the layer works inside. Finally, the peer protocols used in a layer are the layer’s
own business. It can use any protocol (or implementation) it wants to, as long as it provides the offered
services. It can also change them at will without affecting software in higher layers.

The same three elements are used in defining the internal networking architecture of a JTRS node. The
Networking Resource classes (and sub-classes) define the services provided by that class through the set
of methods that the resource uses and that other objects can invoke. NAPIs provide the interface and
define the parameters and results from the resources. Finally, the resource instantiations implement a
particular protocol to provide the service. Thus, different implementations for a single protocol can be
instantiated into different JTRS nodes without impacting objects already installed in the different radios.
Alternatively, this object layering approach makes it easy to create new protocol stacks by switching out a
particular Networking Resource used in one protocol stack and replacing it with a different Networking
Resource as long as it satisfied the base Resource class and the NAPIs.

2.5.2.1 Benefits of the JTRS Internal Networking Architecture

This JTRS Internal Networking Architecture opens up the future military radios and wireless networks
through the partition of functionality into abstract network resources with associated standard, extensible
interfaces. This architecture provides the following benefits:

• Reduced cost of acquisition due to increased competition

• Shorter product development cycle due to the parallel development by multiple vendors possible
due to standardized NAPIs and resources.

• Improved joint operational capability and efficiency. Stovepipe legacy networks and
communication equipment operated by various agencies can now be used as one system. This is
possible due to the standard Access and Internetworking NAPIs.

• Extended useful life of the existing stovepipe communication systems and equipment. Due to the
NAPIs, it will be possible to tear existing waveforms apart and recombine them to provide
improved services. For example, it will be easier to run standard application services, such as IP,
over legacy waveforms that today do not support these services.

• Increased useful life of the equipment due to the ease of technology insertion. As newer
technology becomes available, the impacted resource can be upgraded without making obsolete

4 See “Computer Networks,” 3rd edition, Andrew S. Tanenbaum, pages 28-44.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-153

the entire system. Again, this is possible due to standardized resources and NAPIs. Also, it will
become easier to add commercial application services above the custom military modulation and
subnet protocols.

2.5.2.2 JTRS Networking Resources
A conceptual model of the JTRS Networking Resources within the JCF is shown in figure 2.5-3. This
figure also shows typical services provided by the different subclass methods. Any Networking Resource
could be instantiated on either side of the INFOSECResource, although some resources, such as
RepeaterResource, will almost always be on only one side. For example, the same IP Router Resource
would be on both sides of the INFOSECResource for SIPRNET (Secret Internet Protocol Routing
NETwork) tunneling through NIPRNET (Unclassified (but Sensitive) Internet Protocol Routing
NETwork). This figure does not show network management resources, such as SNMP agents, that would
typically be UtilityResource subclasses.

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

Modem Resource

Modem NAPI

Resource

Utility ResourceLink Resource

Link NAPI

Waveform
LinkResource

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem

Repeater
Resource

Network Resource

Network NAPI

Retransmit
ControlModem

Waveform
Modem Resource

Interleave
EdacEncode
Modulate
Spread
AcquirePreamble
DeInterleave
EdacDecode
Demodulate
Despread
ScheduleTimeSlot
TimeStamp
Synchronize
ControlRF

Bridge
Resource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

Waveform Network
Resource

RoutePacket
MulticastPacket
BroadcastPacket
DiscoverNeighbor
MaintainRouting
ForwardQoS
MeasureNetworkQ
AnalyzeNetworkQ

Router Resource

TranslateAddress
TranslateQoS
RoutePacket
MulticastPacket
BroadcastPacket
DiscoverNeighbor
DiscoverMobileNode
MaintainRouting
ForwardQoS

Gateway
Resource

TranslateMessage
TranslateVoice
TranslateVideo

2.5-3

Segmentation
Desegmentation
FlowControl
ErrorDetection

Segmentation
Desegmentation
FlowControl
ErrorDetection

FlowControl
ErrorCorrection FlowControl

ErrorCorrection

Figure 2.5-3. Networking Resources and Subclasses within JCF

The JTRS Networking sub-classes map into the OSI Networking Protocol model as shown in figure 2.5-4.
This figure shows two very similar protocol stacks for wireless-to-wireless networking and wireless-to-
wireline networking. The only difference is that the wireline stack has a WirelineResource at the physical
layer instead of a ModemResource and RFResource. Figure 2.5-5 shows instantiations examples for
every inter-networking resource.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-154

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

2.5-4

7 - Application
6 - Presentation
5 - Session

4 - Transport

3
- N

et
w

or
k

2 - Link

1 - Physical

3B
Inter-

network

3A
Sub-

network

OSI Layers

Repeater
Resource

Waveform
Modem

Resource

Network NAPI

Link NAPI

Modem NAPI

Waveform
Modem

Resource

Bridge
Resource

Waveform
Link

Resource

Waveform
Link

Resource

Waveform Network
Resource

Waveform Network
Resource

Router
Resource
Router

Resource

Gateway
Resource

Utility
Resource

Utility
Resource

Link NAPI

Wireless to Wireless

RFRF

Waveform
Modem

Resource

Network NAPI

Link NAPI

Modem
NAPI

Wireline
Resource

Bridge
Resource

Waveform
Link

Resource

Waveform
Link

Resource

Waveform Network
Resource

Waveform Network
Resource

Router
Resource
Router

Resource

Gateway
Resource

Utility
Resource

Utility
Resource

Link NAPI

Wireless to Wireline

CorePacket
NAPI

Internetworking
Resource

Lower
Layer

Resource

Lower
Layer

Resource

(Inter-)Networking
Resource

(Inter-)Networking
Resource

Lower Layer NAPI

Symbology

1 1

2

1

• Traffic Flow is up one side
of protocol stack and down
the other side

• Traffic flow up or down the
protocol stack is shown via
 & while traffic flow
from one side of the
protocol stack to the other
is shown by & .

• The Lower Layer NAPI
interface is used for flows
 & while the Upper
Layer NAPI is used for
flows & .

• Resources shown as
can flow data vertically,
Resources shown as
can flow data horizontally,
and Resources shown as
 can flow data
vertically and/or
horizontally.

2

(Inter-)Networking
Resource

(Inter-)Networking
Resource

Upper Layer NAPI3 3

4

3

4

2 4

2 4

RFRF RFRF

Figure 2.5-4. Networking Resource Mapping into OSI Network Model

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-155

RF Freq1 RF Freq2 RF

802.11
Modem

RF

Link-16
Modem

Link-16
Link

RF

EPLRS
Modem

EPLRS
Link

EPLRS
Subnet

RF

SINCGARS
Modem

188-220A
link

188-220A
Subnet

RF

Soldier
Phone

Modem

Soldier
Phone
Link

Soldier
Phone
Subnet

IP
Router

RF

IS-95
Modem

Frequency 1 to
Frequency 2

Retransmission

802.11 Wireless
LAN to 802.3

Ethernet

Wireless
Subnetworks like

Link-16

IP Routing in INC
above EPLRS and

SINCGARS 188-220

Translation
between MELP

and PCM

RF
Repeater

HF
Modem

HF
Modem

802.1 Bridge

802.11
Link

802.3
Wireline
Device
Driver

Link-16
Paired-Slot

Relay

IP Router

Vocoder
Gateway

MELP
Vocoder
Utility

PCM
Vocoder
Utility

IS-95
Signaling
& Traffic

IS-95
Base

Station
Switching

Mobile
Switch

Figure 2.5-5. Example Networking Instantiations

2.5.2.3 JTRS Networking Application Programming Interfaces (NAPIs)
Figure 2.5-3 shows the JTRS NAPIs that are common for all networks and waveforms. These are the
ModemNAPI associated with the ModemResource, the LinkNAPI associated with the LinkResource, and
the NetworkNAPI associated with the NetworkResource. Figure 2.5-6 illustrates the object hierarchy of
the NAPIs. New NAPIs can be defined as needed, say for a particular legacy waveform, by extending the
capabilities inherited from the base class NAPI. Additions to these NAPIs will be developed to provide
additional support for Quality-of-Service (QoS).

NAPIs provide a set of generic “primitives” that can be mapped to various software and hardware
implementations, as appropriate for the particular system environment. For a particular NAPI, these
primitives define the functional interface between a “lower object” that provides a service and an “upper
object” that is a user of that service. The NAPIs are described in greater detail in section 2.5.2.4.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-156

Core
NAPI

Core
Packet NAPI

Modem
NAPI

Time-
Synchronized
Modem NAPI

Link
NAPI

Network
NAPI

Figure 2.5-6 NAPI Object Hierarchy

2.5.2.4 Example Internal Node Views

2.5.2.4.1 Tactical Internet with the Addition of a JTRS Wideband Waveform

This section provides examples to show how functions required to support the current interfaces for a
Tactical Internet platoon command vehicle, plus the addition of a future JTRS wideband waveform,
would be implemented using the JTRS Architecture.

Supposition:
Continued Advanced Warfighter Experiment (AWE) use of video conferencing, full-motion video white
boarding and the rapid distribution of annotated still photographic images have demonstrated the value
of these services. As a result, the Tactical Internet can be expanded to provide these services down to the
platoon command echelon as part of a battalion-oriented multimedia RF network.

However, introducing these additional services cannot be allowed to adversely impact the current critical
C2 and SA distribution provided by the EPLRS Division Network and the Applique Host. Therefore, the
Battalion Multimedia Network needs to be deployed as an additional RF radio network within the
Tactical Internet.

Deployment Approach:
Consider a four (4) RF Channel JTRS Radio deployed to all battalion command vehicles down to and
including the platoon command level:

• RF Channel #1 - EPLRS Division Backbone Interface, 420-450 MHz

• RF Channel #2 - SINCGARS/E-SIP CNR Interface, 30-88 MHz

• RF Channel #3 - SINCGARS/E-SIP CNR Interface, 30-88 MHz

• RF Channel #4 - JTRS Multimedia Network Interface, 800-2000 MHz

• I/O Interface #1 - RS-423 for connection to the Applique Host

• I/O Interface #2 – Universal Serial Bus (USB) for connection to the Multimedia Host

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-157

JTRS can also provide an embedded application service for the support of automated Unit Task Re-
organization.

Figure 2.5-7 and figure 2.5-8 show the current vehicle and network configurations.

2.5-7

Appliqué

EPUU

INC

1 2 3
4

0

5 6
7 8 9

1 2 3 1 2 3
4

0

5 6
7 8 9

1 2 3

SINCGARS SINCGARS

Figure 2.5-7. Current Command Vehicle Configuration

INC

SINCGARS

SINCGARS

INC

EPLRS
FBCB2 Division

Backbone

EPUUEPUU

SINCGARS

SINCGARS

Applique INC

SINCGARS

SINCGARS

Applique

AppliqueSINCGARSINCApplique SINCGARS

Platoon Net

Company Net

Platoon Leader Platoon Sergeant

Wingman Wingman
2.5-8

Figure 2.5-8. Current Platoon Network Configuration

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-158

Figure 2.5-9 shows how the functions would be provided within the JTRS Architecture. In this figure, the
EPLRS Division Backbone Interface is through a Modem Resource, INFOSEC Resource, Red Link
Resource, and Red Network Resource. The SINCGARS/E-SIP CNR Interface is through a Modem
Resource, INFOSEC Resource, Red Link Resource (MIL-STD-188-220), and Red Network Resource.
The JTRS Multimedia (MM) Network Interface uses the Modem Resource, Black Link Resource (JTRS
Relay), Black Network Resource (JTRS Intranet), INFOSEC Resource, and Red Network Resource.

The RS-423 connection to the Applique Host uses Red WirelineResouce supporting PPP. The USB
connection to the Multimedia Host uses Red WirelineResource supporting USB and the Unit Task Re-
organization uses Red UtilityResource accessible via TCP.

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

SINCGARS
Network

Resource

 Link
Resource
(188-220)

2.5-9

CORBA
RS-423
 Agent

CORBA
INFOSEC

SINCGARS
Modem

SINCGARS
Modem

EPLRS
Modem

JTRS MM
Modem

CORBA
Modem
Agent JTRS

Intranet

JTRS
Relay

SINCGARS
Network

Resource

 EPLRS
 Network
 Control

EPLR
 NCS
Agent

JTRS
Network

Resource
USB

RS-423
 I/O

 JTRS
Inter-network
 Router
 Resource

 UTR
Server

Modem
 NAPI

Modem
 NAPI

Modem
NAPI

 Link
 NAPI

 Link
 NAPI

 Link
 NAPI

 Link
 NAPI

 Link
 NAPI

Core
Packet
NAPI

Core
Packet
NAPI

Black GPP Processor

Red GPP Processor

Network
 NAPI

Utility
Resource-1

WirelineResource-2

WirelineResource-1

 EPLR
 Link
Resource

EPLRS
Network
Resource

 Link
Resource
(188-220)

Link
Resource

CORBA
Modem
Agent

CORBA
Modem
Agent

CORBA
Modem
Agent

Modem
NAPI

INFOSEC

INFOSEC

INFOSEC

INFOSEC

Figure 2.5-9. Functional Overlay onto JTRS Architecture

Additional details of the SINCGARS/SIP implementation are shown in figure 2.5-10.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-159

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

2.5-10

InfosecModem

SINCGARS Sub-network Agent

Convergence
 Layer

MIL-STD-188-220B

SINCGARS
Agent

EPLRS Agent
InfosecModem

SA
Agent

NetResource

JTRS
Red

Router

 PTT
Voice

RS-423
Link

PPP

CVSD

CVSD

EPLRS
Red Proc.

InfosecModem

JTRS
Black
Router

InfosecModem

USBEthernet

Multimedia
Host

Applique

VoCoder

WirelineResources

Figure 2.5-10. SINCGARS SIP (2 Channels) Additional Details

For completeness, the upgraded vehicle and platoon network configurations are shown in figure 2.5-11
and figure 2.5-12.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-160

2.5-11

Tactical Internet Command Vehicle
with JTRS Radio

Appliqué

Multimedia
Host

RS-423

10baseT

JTRS Radio

Figure 2.5-11. Updated Command Vehicle Configuration

SINCGARS

SINCGARS

JTR

EPLRS Division
Backbone

Applique

AppliqueSINCGARSApplique SINCGARS
Platoon

Net

Company Net

Platoon Leader Platoon Sergeant

Wingman Wingman

2.5-12

JTRS Battalion
Multimedia

Network

MM Host

JTR Applique

MM Host

INC INC

Figure 2.5-12. Updated Platoon Network Configuration

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-161

2.5.2.4.2 Overlay of Emerging DARPA ASPEN/WINGS Technology

The target environment for Advanced Signal Processing and Networking/Wireless Internet Gateway
System (ASPEN/WINGS) is a tactical IP based network. All information is carried through the network
using IP. Each ASPEN node will include an embedded router capable of routing messages within and
across tactical wireless networks. The baseline networking protocols are Adaptive Link-State Protocol
(ALP) for unicast routing and Core-Assisted Mesh Protocol (CAMP) for multicast and reliable multicast.

In contrast to typical networking protocols that maintain one link for each neighbor, the ASPEN protocols
maintain multiple logical links with each of its neighbors. The multiple logical links provide different
levels of service characterized by parameters for capacity, delay, reliability, jitter, and net impact. Each
IP packet will be routed based on the requested QoS and the logical link characteristics. Based on packet
destination and QoS the router will select a logical link for message transmission. The selected logical
link is used by the link layer protocol to set transmission parameters used by the modem. These
parameters include transmit power, spreading gain, and packet size. The link layer protocol monitors the
connectivity and logical link status with each of its neighbors. Based on previous transmission
parameters and signal-to-noise measurements from the modem, the link layer can adapt the link
parameters to maintain link performance. The routing algorithm determines the best route for each packet
using the resulting logical link table. Additional information on ALP and CAMP is in Appendix F.

The ASPEN protocols are encapsulated in the system software and split across the Red and Black
processors as shown in figure 2.5-13. The encapsulated protocols on the Black side include the Link
Layer and Media Access protocols. The neighbor protocol and the network, transport, and routing
protocols are hosted on the Red side. Figure 2.5-13 also calls out several NAPI’s. On the Black side, the
modem NAPI specifies the interface between protocols and the modem driver. The Link NAPI defines
the interface between Link Layer protocol and the neighbor and network protocols.

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

2.5-13

Link
Resource
(ASPEN)

CORBA
Ethernet
 Agent

INFOSECASPEN
Modem-2

ASPEN
Modem-3

ASPEN
Modem-1

CORBA
 Modem
 Agent

ASPEN
Network

Resource

Ethernet
I/O

JTRS
Inter-network

Router
Resource

Modem
NAPI

 Link
 NAPI

CorePacket
 NAPI

Black GPP Processor

Red GPP Processor

WirelineResource-1

Link NAPI
Link NAPI

Figure 2.5-13. ASPEN Overlay on the JTRS Internal Node Architecture

2.5.2.4.3 Overlay of Emerging DARPA RAVEN Technology onto JTRS Architecture
Reliable All-Informed Voice Enhanced Networking (RAVEN) is one of a group of experimental
technology developments sponsored by DARPA. This group is primarily concerned with providing
highly reliable low latency communications services, and in RAVEN’s case in particular, for all-informed
voice networking, over highly mobile RF networks. The primary characteristics of this group of
technology are:

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-162

• Multiple Channel Multi-band RF Interface

• Highly adaptive RF transmission including

• Power Adaptation

• Data Rate Adaptation

• Coding Adaptation

• Use of both Frequency Division and Code Division Multiple Access

• Use of LPD and LPI techniques

• Rapid Network Formation and Convergence

• The ability to provide a wide range of different Qualities-of-Service.

Figure 2.5-14 demonstrates how the JTRS Architecture would accommodate this group of technology
either as a common JTRS Intranet Layer or as part of an access network.

2.5-14

Infosec

Modem

Physical
Link

I/O
Layer 2

RF Adaptation
Layer

Quality of Service
 Manager

Least Resistance
Routing

FDMA Channel
Selection

CDMA Channel
Selection

CSMA/CA
Access

RAVEN

HMT Radio
Control

JTRS
Red

Router

 JTRS
 Black
Router

InfosecModem

Link NAPI

Black Network
Resource

Black Link Resource

Link
NAPI

Modem NAPI

Modem
NAPI

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

Figure 2.5-14. DARPA’s RAVEN Overlaid onto the JTRS Architecture

2.5.2.4.4 Overlay of Soldier Phone Technology onto JTRS Architecture
Soldier Phone is a new wideband wireless network waveform designed to meet the needs for high data
rate, multimedia, adaptive networking in operating environments that:

• are highly dynamic with many changes in RF connectivity and user traffic loading

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-163

• need distributed, peer-to-peer systems with no central points of failure.

Soldier Phone has a layered, modular architecture that overlays directly onto the JTRS Architecture. (See
Section 2.4.5 for a Soldier Phone Application View.) The core Soldier Phone networking functions maps
into the LinkResource and NetworkResource of the JTRS Architecture. Figure 2.5-15 overlays Soldier
Phone on the JTRS Architecture. Additional information on Soldier Phone is contained in Appendix F.

Soldier
Phone
Modem

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

2.5-15

CORBA
Ethernet
 Agent

INFOSECCORBA
Modem
Agent

Soldier
Phone
Link

Resource

Ethernet
I/O

 JTRS
Inter-network
 Router
 Resource

Modem
NAPI

CorePacket
 NAPI

Black GPP Processor

Red GPP Processor
WirelineResource-1

Voice
Codec Handset

CorePacket
NAPI

 Link
 NAPI

WirelineResource-2

Channel
Access

Net
Mgmt

Net
Switching

Soldier Phone
Network

Resource

Soldier
Phone
Utility

Resource

User
Conver
-gence

CorePacket
NAPI

Network
 NAPI

RF
Mgmt

Link
NAPI

Figure 2.5-15. Soldier Phone Overlay on JTRS Architecture

2.5.2.4.5 Overlay Cellular or PCS Waveforms and Networks onto JTRS Architecture

This section describes cellular networks and their relation to the JTRS architecture.

The major elements of a typical cellular network are the Mobile Station (MS), Base Station System
(BSS), Mobile Switching Center (MSC), Home Location Register (HLR), and Network Management
Center (NMC). See figure 2.5-16 for a typical cellular network architecture.

Cellular networks have access network equipment which provides voice and data services to mobile
subscribers. These services can be accessed via the common air interface by the mobiles within the
coverage area established by the network Base Station Transceivers (BSTs) in conjunction with the Base
Station Controller (BSC). The BSC is a radio network controller that controls the radio links between the
BST and the MSs and routes the internal network traffic for each mobile call. A mobile call may be
terminated to another mobile within the network, to another mobile accessing the same network or to a
wireline terminal or another mobile accessed via a different mobile network.

The MSC interfaces the cellular network with external networks, controls the set up and tear down of MS
or external network originated calls. The HLR manages the data bases containing profiles of the mobile
subscribers, processes mobile registrations and authenticates user access requests. The NMC controls the
base station and the MSC and provides network performance and fault monitoring by an operator.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-164

2.5-16

External Networks
PSTN
ISDN
Packet Networks
Other Base Stations

Base
Station
Transceiver

Base Station System

Base
Station
Controller

Mobile
Station

Voice
Async Data
TCP/IP Host
Digital Fax

Mobile
Station

Voice
Async Data
TCP/IP Host
Digital Fax

Air
Interface

Base
Station
Transceiver

Home
Location
Register

Mobile
Switching

Center

Network
Management

Center

Cellular Network

Figure 2.5-16. Typical Cellular or PCS Network Architecture

The user voice and data interfaces at the mobile, the common air interface and the external BSC, MSC
and HLR interfaces are documented and controlled by telecommunication industry standards to allow
multiple vendor equipment to be interoperable within the network and external to the network. The base
station and switching equipment can be considered commercial equipment.

Services

Typical user services available through the type of network represented for third generation cellular
equipment are: Mobility (Roaming, call handoff), Voice, Asymmetric Services (Unbalanced forward and
reverse data rates), Circuit and packet switched data (2048kbps indoor low mobility, 384kbps outdoor and
pedestrian, 144kbps vehicular).

Network Coverage and Capacity

The network is scalable in coverage and capacity by adding BTSs up to the maximum capacity to the
BSC. Multiple BSC’s can be serviced by common MSC, HLR, and NMC equipment.

Mobile Station Functions

The mobile station functions and their high level relationship is shown in figure 2.5-17.

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

Kbd, Display
Speaker, Mic
Data Port

End to end Vocoder
Signaling
MS control
I/O control

Mobile Station

RF Modem Infosec
Red

Processor UI

2.5-17

Modem API
WirelineResource
or UtilityResourceNetResource

Figure 2.5-17. Typical Secure Mobile Station Functions

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-165

In a JTRS implementation of a Mobile Station, functions could be software implemented or implemented
in an ASIC and controlled via a modem agent.

Base Station Functions

The Base station functionality is contained within the Base Station Transceiver and the Base Station
Controller.

BTS Functions

The Base Station Transceiver functions and their high level relationship is shown in figure 2.5-18.

Black Side
NetResource

RF
(1-n)

Modem
(1-m)

Routing Controller
Interface

Timing

Serial Digital

Base Station Transceiver

Control

2.5-18

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

Figure 2.5-18. Base Station Transceiver Functions

In a JTRS implementation of a BST, all the functions are black processes. In like manner with the phone
modem, the BST modems could be software implemented or implemented in an ASIC and controlled via
modem agent. A typical BST would contain multiple modems for the desired quantity of overhead and
traffic channels needed to support the cell capacity in terms of the minimum number of calls within the
cell coverage area to be supported simultaneously. The router, controller interface, timing, and control
are software controllable.

BSC Functions

The Base Station Controller functions and their high level relationship is shown in figure 2.5-19.

BTSs (1-k) BTS
Interface

Network
Routing

Radio Channel
Control

Network
Interface

Timing

Base Station Controller

Control

External Networks
PSTN
ISDN
Packet Networks
Other Base Stations

2.5-19

Figure 2.5-19. Base Station Controller functions

In a JTRS implementation for a BSC, all functions are black processes. A BSC would contain one radio-
channel element for each overhead and traffic channel supported by the BSTs in the network since a BSC

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-166

must support all simultaneous calls within the network coverage area up to the maximum network
capacity. All BSC elements are software controllable.

For purposes of this example, the MSC, HLR and Network Management Center equipment are assumed
to be commercial equipment external to the Base Station System.

2.5.2.5 Preliminary Definition of JTRS NAPIs
For the JTRS Architecture, interfaces used by the Resource classes involved in networking are referred to
as NAPIs. These Networking Application Program Interfaces (NAPIs) are based upon the GloMo APIs.
For more information on the current GloMo APIs, refer to the GloMo API Framework and Definition
documents available at http://www.rooftop.com/openarch.

2.5.2.5.1 NAPI Components
Each NAPI defined within the JTRS Networking Architecture Framework consists of the following
components:

• “Primitives”—used to define the basic information flow across the NAPI,

• “Qualifiers”—flags and other action specifiers applicable to any of the primitives, and

• “Return Codes”—status codes returned from certain primitive operations.

The four basic types of NAPI primitives are described below and illustrated in figure 2.5-20.

Commands Commands are asynchronous upper-to-lower object primitives for
performing immediate, typically non-persistent actions. Commands often
result in an immediate Response, followed later by one or more Signals
from the lower object.

Variables Control characteristics and measurement status information of the lower
object are communicated using Variable primitives. Variables support one
or more of the set, get, increment, or clear synchronous access operations.
Also, “variable groups” allow for the upper object to access a group of
variables with one operation.

Responses Responses report the synchronous lower-object result to an upper object’s
command or variable operation. For Commands, the Response often
indicates whether or not the Command has been received correctly and can
be acted upon, with one or more Signals reporting the result of the action
later.

Signals Signals are asynchronous lower-to-upper object primitives for reporting
recent, typically non-persistent events. The lower object should support the
selective enabling and disabling of each of its supported signals through the
NAPI.

http://www.rooftop.com/openarch

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-167

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

“Upper Object” “Lower Object”

Commands

Signals

Variables
set/get/inc/clr

Responses

2.5-20

Figure 2.5-20. Basic NAPI Primatives

Each primitive can be qualified to give more specific instructions such as specifying which “radio
transceiver” or specifying to which section (e.g., xmt or rcv) the operation should be applied. A special
“info” qualifier is used with variable operations to allow the upper object to learn the capabilities (e.g.,
read/write support, range of valid values, default value) of the lower object with regards to a particular
variable. Each NAPI defines a set of return codes to provide a standard means for the lower object to
indicate the success or failure status in each Response to Command and Variable operations, and in each
asynchronous Signal delivered to the upper object.

The NAPI Framework also defines a basic set of “Core” primitives that are applicable to all NAPIs
defined within this framework. Table 2.5-I presents the . Summary of Core NAPI Primitives. Table
2.5-II extends this set with additional “Core Packet” primitives applicable to all packet-based NAPIs
(such as the Modem, Link, and Network NAPIs).

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-168

Table 2.5-I. Summary of Core NAPI Primitives

Commands Qualifiers Data / Description

CmdReset

Variables Qualifiers Data / Description

VarVersion get Version string (e.g., “2.0.1; 2 July 1998”)
VarName get Name string given to lower object
VarClass get NAPI Class identifier
VarStatus get Lower-object status
VarSigEnable get/set Signal number to enable or disable

Variable Groups Qualifiers Data / Description

VarGroupSelect set groupClassId, groupInstanceNum
VarGroupValues Get/set groupClass & instance, {var, value} pairs
VarGroupClassName get Group class name string
VarGroupClassSize get Group class size (number of variables)
VarGroupClassInstances get returns # of instances given groupClassId
VarGroupClassDefine set groupClassId, name, size, instances, var list
VarGroupDefineNumMax get No. of dynamically-defined groups supported

Signals Qualifiers Data / Description

SigAll
SigError isr Number indicating the error.
SigStatus isr Number indicating the new status.
SigProcResults isr Results of a CmdProcExec.

Table 2.5-II. Extension of Core Packet NAPI Primitives

Commands Qualifiers Data / Description

Core NAPI command primitives, plus:
CmdXmtPkt Packet buffer & its protocol buffer handle
CmdRcvPkt Packet buffer & its protocol buffer handle

Variables Qualifiers Data / Description

Core NAPI variable primitives, plus:
VarMacAdr get/set, clr MAC address/mask for this packet object
VarQPkts get, xmt/rcv No. of packets in queue
VarBitRate get/set, xmt/rcv Raw channel bit rate
VarMaxPkts get, xmt/rcv Max number of packet buffers
VarTestMode get/set Test (e.g., loopback) mode
VarMtu get Max. packet buffer size in bytes.
VarQBytes get, xmt/rcv Total no. of bytes in queue
VarMaxMacAdrs get Max. no. of rcv MAC address/masks

Signals Qualifiers Data / Description

Core NAPI signal primitives, plus:
SigXmtPkt isr Transmitted pkt buf & its proto buf handle
SigRcvPkt isr Received pkt buf & its proto buf handle

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-169

In Appendix F, additional NAPI Primitives are provided for Modem, Time-synchronized Modem, Link,
and Network Resource classes.

2.5.3 JTRS Networking Architecture: External System View

This section describes the JTRS Networking and Inter-networking functions that provide communications
between JTRS Nodes and Inter-network operation between legacy and emerging sub-networks. In this
section the JTRS is treated as a unit and described in communications network applications. It begins
with a concept of operations followed by a services and protocol definition and ends with example
deployment of JTRS radios into tactical network applications.

2.5.3.1 Concept of Operations
A JTRS Network consists of a set of JTRS Nodes and access networks tied together by transport network
edges as shown in figure 2.5-21. This provides a JTRS Network Core. Transport edges can be any
legacy or emerging transport network that meets the desired or required level & quality of service. The
characteristics of a JTRS Network are:

• Use of International Standards in all cases where a standard provides the required level and
quality of service

• Nodes share a common core set of International Standard formats and provide a common set
of services

• Nodes use legacy or emerging networks as transport

• Legacy networks access the JTRS Network over-the-air using legacy waveforms as an
Access Network

• Transport networks may also be Access Networks

• Sub networks may also be treated as Access Networks

• Hosts attach to Access Networks

• Nodes act as Internetworking Gateways between the legacy access networks across the JTRS
Network

• The Network provides data, voice and video services up to the capabilities of the Transport
Networks

• The Network provides different types and Qualities-of-Service, depending upon the
information stream including:

• Low Latency Transit Priority – Low End to End Delay

• Multi-point, including All Informed Voice Networking and Video Conferencing

• Broadcast

• Geographic Information Distribution

• Nodes may provide embedded applications such as:

• Domain and Tactical Name Services

• Situation Awareness

• Sensor data consolidation and evaluation.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-170

JTRS Core Network
- JTRS Nodes use common
 formats & protocols
- Transport Nets can be
 Legacy or Emerging
 Networks Transport Nets

Access Nets
- Legacy or New Waveforms
- Stub JTRS Networks
- As simple as a wireline or
 as complex as the
 Commercial Internet

JTRS

Access
Net

Access
Net

Access
Net

Access
Net

JTRS JTRS

2.5-21

Figure 2.5-21. JTRS Networking Approach

2.5.3.1.1 JTRS Core Network Communications Flow
A JTRS Network consists of a set of JTRS Nodes and access networks tied together by transport network
edges. The JTRS Core Network provides levels of communications services for attached Access
Networks. All attached systems, whether RF or baseband, legacy or JTRS based, are treated as Access
Networks. Access Network Agent software, internal to the JTRS, registers the access network with the
JTRS Core Network by providing the JTRS Address Range(s) associated with the Access Network.

Once registered, the Access Agent Software may request communications services from the JTRS Core
Network via a standard openly documented Networking Applications Program Interface (NAPI) request.
Service requests may be initiated either based upon pre-configured session definitions or upon Access
Network specific dynamic session requests or data arrival. Service requests would include:

• Address of the Originating Host
• Address of the Destination host
• Quality of Service Information
• Best Effort Service
• Differentiated Service with Level and Type of Priority
• Guaranteed Service (session establishment or data payload)
• Data Payload.

The JTRS Core Network provides the same information to the destination Access Network upon delivery
of the data payload.

2.5.3.2 JTRS Network Services and Protocols

2.5.3.2.1 Data Networking Service

The JTRS Data Networking Service must deliver digital data on both a point to point and multipoint
distribution basis. The Data Networking Service must support various qualities of service, including low
latency and high reliability, and should be allocated network resources on an as needed basis. The best
choice for the JTRS Data Networking Service standard is the IPv4, IPv6 or IPv8 suite of protocols
including:

• Internet Protocol (IP)
• Transport Control Protocol (TCP)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-171

• User Datagram Protocol (UDP)
• DIFFSERV, IP Datagram Differentiated Services
• Resource ReSerVation Protocol (RSVP)
• Session Initiation Protocol (SIP).

Legacy data arriving from an Access Network would be translated into a JTRS Core Network service
request for relay to another JTRS Access Network interface. Typically, if the IP protocol suite were to be
as the JTRS common protocol, this would simply mean that each access network would require a
convergence layer software agent within the JTRS radio to translate any Access Network specific
addresses and Quality-of-Service requests.

2.5.3.2.2 Voice Networking Service

The JTRS Voice Networking Service must provide both point to point and broadcast (all informed)
capability. Most voice services require both low latency and minimum jitter. A JTRS node must be
capable of inter-operating with all legacy voice interfaces including:

• CVSD-12
• CVSD-16
• LPC-10e
• CELP.

A JTRS node may also provide a voice translation service to supply Inter-working between various
legacy voice networks if required. Internally, the JTRS Network should adopt a common voice format for
voice communication between JTRS Nodes. Possible candidates for this JTRS Common Voice format
include:

• Mixed Excited Linear Prediction (MELP)
• G.723.1
• PCM
• A list of selectable formats which may be chosen on an application by application basis.

There will also be many applications where translation is unnecessary or undesired because both source
and destination share a voice compression format and the load on the JTRS Network for carrying the
legacy compression format is reasonable. Access Network Agents may access this non-translation voice
service simply by forwarding voice packets over the JTRS Network via the Data Networking Service with
Guaranteed Service QoS.

2.5.3.2.3 JTRS Video and Multimedia Services
JTRS Multimedia Service must provide point to point and multi-point video and multimedia (video with
embedded voice) communications services. Like voice, quality multimedia services require low latency
and low jitter, but typically demand much greater network bandwidth than voice. While the JTRS
Network need not necessarily be cognizant of multimedia or conferencing communications beyond
providing the necessary QoS, the network could provide its own internal multimedia support service. A
possible candidate for the JTRS Multimedia Service common format is the International
Telecommunication Union recommendation H.323 series including:

• H.323 – Visual Telephone Systems for Local Area Networks

• H.324/M – Visual Telephone Terminals over Mobile Radio

• H.245 – Control Protocol for Multimedia Communications

• T.120 – Data Protocols for Multimedia Conferencing.

An alternate candidate would be the emerging IETF Session Initiation Protocol (SIP) suite including:

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-172

• SIP, RFC 2543

• RSVP, RFC 2205

• Real Time Transport Protocol (RTP), RFC 1889

• Real Time Streaming protocol (RTSP), RFC 2326

• Session Announcement Protocol (SAP), IETF Internet Draft

• Session Description Protocol (SDP), RFC 2327.

2.5.3.2.4 Quality of Service

The JTRS Network Core must support Qualities-of-Service with:

• Best Effort Service – This is a basic connection service that provides no guarantees beyond a
reasonable effort to deliver the data.

• Differentiated Service – This traffic receives preferential treatment in terms of 1) getting access to
network transport media ahead of Best Effort Traffic and 2) having protected access to data
buffers so it is discarded due to congestion less often. However, this is a statistical preference
and not a guaranteed level of service. This also includes route selection based upon type of
service.

• Guaranteed Service – An absolute reservation of network resources for specific traffic streams.
This type of QoS is typically characterized by a session or circuit establishment preliminary
activity prior to the actual data transfer.

The actual mechanisms employed for providing the various QoS levels will vary on a transport-network
by transport-network basis and may vary from dedicated TDMA circuits to various priority queuing and
media contention control mechanisms.

2.5.3.3 Approach Toward the Implementation of the JTRS Core Network

The JTRS Core Network implementation approach is to use the widely accepted IP Suite of Standards
including, but not necessarily limited to, the following protocols:

• IP, RFC 791

• TCP, RFC 793

• Internet Control Message Protocol (ICMP), RFC 792

• Class Independent Domain Resolution (CIDR) Addressing. Each legacy access network would
occupy one or more CIDR address ranges

• UDP, RFC 768

• Internet Group Management Protocol (IGMP), RFC 1112

• RSVP, RFC 2205, for requested Guaranteed Service QoS

• IP Differentiated Services for requesting Differentiated Services QoS

• Simple Network Management Protocol (SNMP), RFC 1157, for Network Management and
Control

• Domain Name Services (DNS), RFC 1034, 1035, for name to address conversion.

The rationale for selecting this approach is that the IP Suite is the single most widely accepted set of data
communication protocols within the commercial world. Therefore:

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-173

• COTS Software packages supporting these protocols are widely available

• Continued improvements and new services will be developed

• Most, if not all, of the emerging Adaptive Wideband RF Network Technologies are IP-based or
IP-compatible. This will make interoperation with these emerging technologies easy to achieve.

• All of these protocols are included in the Joint Technical Architecture.

Network Topology (Routing Protocols)

One of the primary problems associated with large inter-networks, especially ones containing RF sub-
networks with relatively modest capacity, is the problem of distributing adequate addressing and network
topology information between network routers for the creation of forwarding tables. Typically, this
information must be acquired and distributed dynamically to account for topology changes and this flow
of routing information can be a significant overhead on the network.

The network architecture typically used within the commercial internet is hierarchical, consisting of
Autonomous Systems (AS) that use an Interior Gateway Protocol (IGP) for routing within the AS and
Exterior Gateway Protocol (EGP) for routing between ASs. Deployment of this architecture can take
many months to plan and the basic architecture is static in nature and not supportive of router mobility.

The current Joint Technical Architecture specifies the use of commercial internet architecture and the use
of Open Shortest Path First (OSPF) as the IGP and BGP4 as the EGP. OSPF-II is a Link State protocol,
where the routers distribute connectivity information in order to construct a graph representation of the
network. Unfortunately, OSPF-II was designed primarily with point to point or relatively high bandwidth
LAN connections in mind and the methods of Link State distribution adopted tend to introduce a much
higher level of overhead than can typically be tolerated in the RF network world. This commercial
architecture and set of routing protocols (OSPF, BGP4) is currently used in the military where there are
highly reliable, high-bandwidth sub-nets. The architecture includes the use of these commercial protocols
and architecture, and adds to it the necessary architecture and protocols for the low-bandwidth, high-
mobile, tactical sub-nets.

There is an active initiative that addresses tactical routing in the field (Force XXI Tactical Internet). In
addition, there are mobile, ad-hoc networking research efforts ongoing both within the DARPA GloMo
community and the Internet Engineering Task Force (IETF) working groups. A summary table of these
efforts is included in Appendix F.

The five JTRS nodes depicted in the JTRS Networking example in the next section inter-operate with IP
forwarding. The nodes shown in the upper portion of the diagram use commercial internet routing
protocols and those in the lower portion of the diagram use the tactical internet protocols for situation
awareness and C2 networking. Node 4 provides the gateway function between the lower tactical internet
and the commercial routing protocol based network.

2.5.3.4 JTRS Networking Example
This section provides an example of how a JTRS network provides networking service across a simplified
theater network shown in figure 2.5-22. JTRS radios at key locations provide a core inter-network layer.
Access Networks for this JTRS core consist of:

• The SINCGARS CNR networks

• Shipboard and Tactical Operations Center (TOC) LANS

• The Mobile Subscriber Equipment (MSE) Asynchronous Transfer Mode (ATM) network, which
provides access to the remainder of the division. This is an example of an arbitrary Inter-network
subdivision to limit the amount of routing information overhead.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-174

• The Light Infantry Network which is a stub and therefore treated as an Access network even
though it is JTRS Based.

• The PCS Network.

Shipboa rd
 LAN

B rigade TOC
 LAN

 JTRS
W ideband
W ave form

SA TCO M

JTR JTR

JTR

M SE
A TM

EPLR S

SINCG AR S

 JTR S
W aveform

JTR

JTR

 PC S
C ellu lar

 D IV
TOC to TOC

 BN TO C
 LAN

NTDR

SINCG AR S

 BN
 TOC to TOCBN Backbo ne

BN Cm d Net

Co C m d Ne t
C o Task Force
 Com m ande r

Shipboa rd
 LAN

1
2

4

5

3

Simplified Notional
Theater Inter-network

= Access Net

= Transport Net

Figure 2.5-22. Simplified Notional Theater Inter-network

For this example, it will be assumed that

• “Information hiding” has been instituted by allowing the arbitrary definition of Inter-network
subdivisions (such as with the MSE ATM and Light Infantry sub-networks)

• The method of JTRS node discovery and information distribution is determined by the
specific sub-network

• Routing information is distributed via a Link-State graph description since this easily
provides a means of indicating transit sub-network QoS capabilities.

2.5.3.4.1 Network Initialization Example

Each JTRS registers 1) the addresses of the Access Networks to which it has access, including multicast
group addresses to which one or more host in the access network wish to subscribe, and 2) the QoS
capabilities of its attached Transit Networks. Access Network address ranges and transit Network QoS
capabilities can be dynamically updated as conditions change. Table 2.5-III summarizes the means to

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-175

determine this information is Access-Network and Transit-Network specific. For example, within a
SINCGARS/SIP CNR network, all associated Applique host addresses are advertised to the network
gateways via a low overhead protocol based on an Internet Control Message Protocol (ICMP) called RFC
1256+.

Table 2.5-III Summary Graph Information

JTRS

Access
Networks
Attached

Address
Range

Transit
Networks

Address
Range

QoS
Support

#1 Shipboard
LAN

148.33.190.0 – 255 JTRS
Wideband

148.33.191.0 – 255 Best Effort
Differentiated
Guaranteed

JTRS
Wideband

148.33.191.0 – 255 Best Effort
Differentiated
Guaranteed

#2 Shipboard
LAN

148.33.192.0 – 255

SATCOM Unnumbered Best Effort
Differentiated
Guaranteed

SATCOM Unnumbered Best Effort
Differentiated
Guaranteed

#3 MSE ATM
BDE TOC
LAN
PCS

148.33.193.0 – 255
148.33.194.0 – 255
148.33.195.0 - 255

NTDR 148.33.196.0 – 255 Best Effort
Differentiated
Guaranteed

NTDR 148.33.196.0 – 255 Best Effort
Differentiated
Guaranteed

#4 BN TOC LAN
BN Cmd Net

148.33.197.0 – 255
148.33.198.0 – 255

EPLRS 148.33.199.0 – 255 Best Effort
Differentiated
Guaranteed

#5 BN Cmd Net
Co Cmd net
Light Forces

148.33.200.0 – 255
148.33.201.0 – 255
148.33.202.0 - 255

EPLRS 148.33.199.0 – 255 Best Effort
Differentiated
Guaranteed

2.5.3.4.2 Data Communication Examples

2.5.3.4.2.1 Best Effort Data Communications
Please refer to figure 2.5-22 for this example. The communication is between:

Source: Host on Shipboard LAN Network (JTRS #1)
Destination: Host assigned to the S3 of the 3-66th Armor Battalion (JTRS #4)
Step #1 – Determining the Destination Host IP Address

There is no reason to expect that the individual addressing the message will have any means of knowing
the IP Network Address of the S3’s assigned host. More likely is that the individual will have on his
assigned host a list of names in domain format such as “S3.bn366.4id.army.mil” from which he can select
a destination host. The conversion into a network address can occur either through a look-up table built

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-176

into the host application or more likely, given the dynamics associated with address and role assignments,
via a name resolution request sent to a DNS application. This application may either be resident on a host
or be an embedded application within the local JTRS. Once a name resolution has been received, hosts
will typically cache the translation for some period of time in order to eliminate this step.

Step #2 – Forwarding the Message
It is likely that the destination host for the S3 is within a vehicle attached to the BN Command Net, so
would be of the form 148.33.200.x, say for example 148.33.200.7. Unfortunately, the originating host
only knows:

1. the IP address of the sub-network to which it is attached, 148.33.190.0,

2. its own address, say 148.33.190.1,

3. the address of the sub-network gateway, which in this example would be the JTRS.

The originating host can determine that the destination is not a member of his local sub-network, so its
only choice is to forward the message to the JTRS gateway.

The mechanism for forwarding the message to the JTRS gateway is always sub-network specific as is the
mechanism employed for determining the IP Address of the gateway. In this particular example, the host
would broadcast an Address Resolution Protocol (ARP) request message on the local LAN asking for the
ethernet Media Access (MAC) address of the JTRS gateway. Once the ARP response is received, the
host can send the message to the gateway for routing across the JTRS Network.

If the LAN is a non-IP sub-network and the hosts do not support IP, the JTRS would have to provide an
address proxy and translation function within the network specific object interface and accept all
messages not addressed to a local host. For example, assume that the hosts attached to the LAN transmit
data via the MAC layer only and rely on bridges to relay packets. The JTRS would then translate both the
origination and destination MAC addresses into IP addresses, or in the case of the destination, more likely
a domain name. Any necessary name resolution would also have to be provided by the JTRS.

It can be difficult to maintain an accurate MAC address to IP address, or domain name, translation list,
unless there are a very large number of this type of host which needed to inter-operate with IP based
hosts. It may be more cost effective to simply upgrade the hosts in the access network to IP.

Step #3 – Routing Across the JTRS Network

Regardless of whether the originating Access Network is IP based or not, what is ultimately delivered to
the JTRS Core Network in JTRS #1 is a data message with an IP origination address, IP destination
address and a minimum QoS, Best effort, request.

JTRS #1 has no access to destination sub-network 148.33.200.0, but it does have a network graph and
from that graph can determine that JTRS #4 does have access to that network and it can determine the
path to JTRS #4. The JTRS Network nodes now use standard IP forwarding to relay the message toward
sub-network 148.33.200.0. The mechanisms utilized for transmission of the message across each
intermediary is always sub-network specific.

For example, both the NTDR and EPLRS transit nets are potentially complex networks themselves and
there may be several intermediary relays required to send a message from JTRS to JTRS across these
transit sub-networks. However, the sub-network topologies and methods of information only need to be
known by the radios directly attached to these transit sub-networks. JTRS #2 for example, does not
require any information about the configuration of the circuits across the EPLRS sub-network nor the
current cell structure of the NTDR sub-network. These are examples of the “information hiding” concept.

Similarly, the EPLRS sub-network for example, will choose the most appropriate mechanism for data
delivery based upon the message type and required service. If the information is SA, normally forwarded

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-177

to a multicast group, then the distribution will be via either the BN CSMA or BDE MSG broadcast
circuit. If it is C2, also typically multicast, then the distribution will be either via the BN or BDE C2
CSMA circuit. In this case, where the message is addressed to a single destination, the EPLRS access
network specific operations in the JTRS radios would establish a Dynamically Assigned Permanent
Virtual Circuit (DAP) to provide bi-directional communications for as long as the two hosts were
exchanging messages. This is an example of allowing the mechanism for information delivery to be
determined based upon the sub-network characteristics and the service requested rather than attempting to
overlay some common distribution mechanism on all sub-networks.

Step #4 – Delivery to the Destination Host
Ultimately, the message should arrive at JTRS #4 which has direct access to the BN Command sub-
network and it would be the responsibility of the SINCGARS-SIP Access Network specific logic in JTRS
#4 to deliver the message across the CNR sub-network. In this instance, JTRS #4 would embed the
message in a MIL-STD-188-220B layer 2 frame and send it to the sub-network station ID associated with
the INC to which the destination host is attached.

2.5.3.4.2.2 Differentiated Service Communications

A message with Differentiated Services, or priority, QoS would be transmitted in the same manner as a
Best Effort message with one critical difference. The Differentiated Services message would receive
preferential treatment in any contention for buffer or Link Bandwidth resources over any Best Effort
messages. This generally results in Differentiated Service messages having a higher Message Completion
Rate (MCR) and a lower End to End (ETE) delay. If no Differentiated Service messages were being
forwarded, then typically the buffer and Link Bandwidth resources would be available for use by Best
Effort messages. There may be multiple levels of Differentiated Service, with each level receiving
preferential treatment over all lower levels.

2.5.3.4.2.3 Guaranteed Service Communication
Guaranteed Service QoS is typically characterized by the actual reservation of resources across each sub-
network for the Guaranteed Service. The procedure for established a Guaranteed Service across Access
Networks and Transit networks would always be sub-network specific, however the process for
requesting such service would be, in this example, by the forwarding of RSVP messages between each
pair of JTRS radios in the unicast or multicast path. In certain cases, such as TDM or circuit-switched
technologies, resources reserved for Guaranteed Service, especially Link Bandwidth resources, are not
available for other messages if no Guaranteed Service traffic is being transmitted.

2.5.3.4.3 Example JTRS Network Configurations
The network deployments shown in this section as examples of the wide range of applications that must
be supported by a multi-channel JTRS architecture in order to provide digital networking across the
various service domains.

2.5.3.4.3.1 Sample JTRS Configuration for a Force XXI FBCB2 Network Application
Figure 2.5-23 shows the current configuration of the Force XXI FBCB2 platoon network.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-178

INC

SINCGARS

SINCGARS

INC

 EPLRS
FBCB2 Brigade
 Backbone

EPUUEPUU

SINCGARS

SINCGARS

Applique INC

SINCGARS

SINCGARS

Applique

AppliqueSINCGARSINCApplique SINCGARS

Platoon Net

Company Net

Platoon Leader Platoon Sergeant

Wingman Wingman

Figure 2.5-23. Current Platoon Network Configuration

Figure 2.5-24 shows the same FBCB2 platoon network with a JTRS radio in the Platoon Leader and
Platoon Sergeant vehicles.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-179

INC

SINCGARS

SINCGARS

 EPLRS
FBCB2 Brigade
 Backbone

Applique Applique

AppliqueSINCGARSINCApplique SINCGARS

Platoon Net

Company Net

Platoon Leader Platoon Sergeant

Wingman Wingman

JTRS JTRS

2.5-24

Figure 2.5-24. Platoon Network with JTRS radios

In order to provide this application, the JTRS would need to be configured with the following interfaces:

• Two SINCGARS/SIP CNR Network RF Interfaces

• An EPLRS RF Interface

• An RS-422 Serial I/O connection running IP over PPP.

2.5.3.4.3.2 Sample JTR Configuration for a Battalion Tactical Operations Center Application

Figure 2.5-25 shows the current configuration of the Force XXI Battalion TOC for a single TOC vehicle.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-180

ABCSABCS ABCS ABCS

INCINC
SINCGARS

TMG TMG

 TOC to TOC
 Backbone

TOC LAN

 EPLRS
FBCB2 Brigade
 Backbone

EPUU

NTDRNTDR

EPUU

- Data

- Voice

- Data
- Limited Video

SINCGARS SINCGARS

Figure 2.5-25. Current Force XXI TOC Networking Configuration

Figure 2.5-26 shows a potential TOC network configuration with a JTRS radio with the addition of a
Battalion Multimedia Network.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-181

 EPLRS
FBCB2 Brigade
 Backbone

ABCSABCS ABCS ABCS

 NTDR
 TOC to TOC
 Backbone

TOC LAN

 JTRS
 Battalion
 Backbone

 JTRS JTRS

- Data
- Voice
- Video

- SA
- C2

SINCGARS

Inter-vehicle LAN

 TMG TMG

Figure 2.5-26. Potential TOC Vehicle Configuration with JTRS radio

In order to provide this application, the JTR would need to be configured with the following interfaces:

• One JTRS Wideband Future Waveform Interface

• One EPLRS Interface for access to the FBCB2 Backbone

• One SINCGARS Interface

• One Ethernet or Fast Ethernet LAN interface to connect to the Tactical Multinet Gateway (TMG).

Section 2.7 provides an additional Force XXI FBCB2 example.

2.5.3.4.3.3 Light Infantry Handheld
Figure 2.5-27 through figure 2.5-29 show a hypothetical example of how a dual channel Handheld JTRS
could be deployed to provide Light Infantry network digitized service. At each echelon, the two-channel
radio provides:

• Virtual Voice Networks

• Squad Net

• Platoon Command Net

• Company Command Net

• Data distribution

• Embedded Situation Awareness and Sensor Monitoring/Fusion Applications.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-182

The key point of this illustration is that all radios are physically identical, but have a library of available
RF waveforms which may be selected for operation on the dual multi-mode, multi-band RF channels.
The initial waveform selection may be determined by Radio Fill based upon the mission plan, but can
always be overridden by operator input as the conditions change and the situation warrants.

Team Leader
 (Point)

Grenadier

Automatic
Rifleman

Rifleman

Squad
Leader

Squad Network
 Platoon
Command
 Net

Fire Team Member
Channel #1 = Sensor Monitor
Channel #2 = Squad Net
Embedded Applications

- Sensor Screen
- SA Reporting
- SA Display

Squad Leader
Channel #1 = Squad Net
Channel #2 = Platoon Cmd Net
Embedded Applications

- Sensor Processing
- SA Consolidation

Figure 2.5-27. Squad Network

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-183

2.5-28
Lead Squad

Right Flank
 Squad

Left Flank
 Squad

Company
Command
 Net

Squad
Leader

Platoon
Leader

Squad
Leader

Squad
Leader

Squad Leader
Channel #1 = Squad Net
Channel # 2 = Platoon Cmd Net

Platoon Leader
Channel #1 = Platoon Cmd Net
Channel # 2 = Company Cmd Net

Figure 2.5-28. Platoon Network

2.5-29

1st Platoon

2nd Platoon

3rd Platoon

Platoon
Leader

Platoon
Leader

Platoon
Leader

 Company
Command Net

Co. Cmdr

XO

Battalion
Cmd Net

60 mm
Section
Leader

 60 mm
 Section

AT Squad

Platoon Leaders
Channel #1 = Platoon Cmd Net
Channel #2 = Company Cmd Net

AT Squad Leader
Channel # 1 = AT Squad Net
Channel #2 =Company Cmd Net

Co Cmdr & XO
Channel #1 = Company Cmd Net)
Channel #2 = BN Cmd net

Figure 2.5-29. Company Network

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-184

2.5.3.5 Other JTRS Networking Issues

This section lists additional issues that may not drive requirements for the JTRS Architecture but are part
of a total network solution and requirements associated with the ORD.

2.5.3.5.1 Network Management

2.5.3.5.1.1 Overview of Network Management Functions and Interfaces.
Network Management (NM) is an integral part of the JTRS. NM provides configuration management,
network control, and monitoring of the JTRS radios and includes:

• Coordination of various network elements, including the provisioning, configuration, and
asset management of radios within a network

• Monitoring facilities to provide performance information to human and automated system
managers.

The network management function within the radio manages software objects and properties through the
commands to load software and parameters. It monitors characteristics of its view of the network and
provides agents to make this information available to Network Management.

NM within a JTRS radio supports the JTRS network by providing an standard interface to 1) off-line
functions of network planning configuration management via the JTRS Network Management Planning
Function within ISYSCON or future Joint Services Network Management Stations, and 2) the real-time
functions of network monitoring and control via the JTRS Network Management Monitor & Control
Function. An overview of JTRS network management is shown in figure 2.5-30. The Network
Monitoring agents may reside on the Black Side and/or on the Red Side of the JTRS system.

The JTRS NM interfaces are:

• Other JTRS nodes

• External systems and access nets via JTRS

• Fill Device

• Key Management System

• Joint Network Management Tool

• ISYSCON.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-185

2.5-30

JTRS Network Management
Planning Station

• Network Planning
• Configuration Management

• Configuration
• Software

• Security
• User Profiles

Monitor & Control Position
JTRS Network Management
Monitor & Control Station

• Fault Management
• Performance Management
• Accounting

Device

Fill
Device

External System
(e.g., EPLRS)

Access Net
(e.g., commercial

Internet)

JTRS

JTRS
 Network Management Agent (NMA)

JTRS
• NMA

EKMS
Future Joint Key
Management
System (JKMS)

Joint NetworkJoint
Network

Management
Tool

JTRS Net

ISYSCONISYSCON

• NMA

Figure 2.5-30. JTRS Network Management Overview

2.5.3.5.1.2 Coordination of a JTRS node within a network.

There are four areas that make up coordination of a JTRS node within a network:

• Planning - defining user requirements into a deployable network and configuring units for
deployment.

• Configuration Management - maintaining a database of the JTRS network elements, deployment
information, and external interface information.

• Security Management - managing the keys with the external key Management System.

• User Management –managing user information such as access, privileges, services.

Additional information about these areas can be found in Appendix F.

Network planning ensures that the quality of service is known with the planned network. The planning
process consists of analyzing the following factors against users needs:

• Asset Inventory - Hardware and Software assets of the node (network elements).

• Connectivity - Path loss, line of site, (link bandwidth, waveform etc.)

• Deployment - Lay down and organization, Mobility

• Combat operational environment - Nuclear, biological, and chemical (NBC)
environments, Jamming

• Normal operational environment - Temperature, altitude, humidity, vibration, etc.

• Network performance - Traffic Load, Delay, Completion rate

• Frequency allocation

• Addressing plan

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-186

• Frequency, Time Slot, and Code planning to support various waveforms.
Network planning within SYSCON or other network management tools would be used to provide the
analysis and the resulting configuration decisions would be downloaded to the JTRS radios via a standard
fill interface. The JTRS NM agents within the radio obtain configuration and monitoring information
from ISYSCON to support planned JTRS network deployments and operation.

2.5.3.5.1.3 Monitoring Facilities for Performance Information.

2.5.3.5.1.3.1 Network Management Monitoring and Control
Monitor and Control provides monitoring stations with network and node status information. It also
controls network/unit (element) parameters. The SNMP, a standard network protocol, provides the
structure for monitoring and controlling the network. Network monitoring capabilities allow a network
manager to identify bottlenecks in data bandwidth or message delay, and to make arrangements to remedy
that situation in real-time. JTRS software provides information provided by the waveforms and protocols
on link quality, link reliability, link bandwidth and link data speed information to the network
management agents on the JTRS platform.

2.5.3.5.1.3.2 Performance Monitoring
Performance Monitoring in each of the network elements, including JTRS, monitors selected
communications and processing characteristics of JTRS and external systems and reports the status to the
NM Monitor and Control Position via SNMP. The deployment configuration initially sets the parameters
to be monitored. The NM operator has the capability to change the monitoring parameters. The NM
modules in the network elements have the ability to provide information on each parameter, and has the
ability to generate reports on a timed or event driven basis. Performance management uses the monitored
performance parameters to predict impending network performance problems and alerts the operator to
take appropriate action before it happens. A typical set of parameters are:

• Monitor and control network load

• Link Quality of Service and Quality of Service for a data session, virtual circuit, or the
datagram type traffic

• Bit Error Rate (BER)

• Signal to noise ratio (S/N)

• Networking Quality of performance

• Data rate

• Dropped packets

• Performance Reports.
2.5.3.5.1.3.3 Fault Monitoring
Fault Monitoring provides the NM operator Network Monitoring, Built-In Test (BIT)/Unit Testing/Fault
isolation, Communications Channel Monitoring & Testing, and Network Views/Status/alarms. Fault
management receives status from the SNMP agents and reports the status to the operator via alarms for
critical status changes (audio/visual) and displays for non-critical status changes per operator request.
The operator is able to display various network views of the JTRS: organizational, geographic,
hierarchical, external system, and JTRS unit details. The NM operator has the capability to test a unit or
communications channel via a remote command (SNMP) and receive the test results.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-187

As shown in figure 2.5-31 all monitored network elements have a Management Information Base (MIB)
that is compatible to SNMP architecture for management. Additionally, hardware subsystems in JTRS
and other elements can monitor themselves in real time, detect fault or unusual behavior, and report them
to the NM function within the JTRS element. Similarly, the software functionality in support of the NM
function can process hardware alarms and determine what to do with them. Also, where legacy networks
provide transport services to the JTRS network, the SNMP agent on the JTRS side processes the NM
information to and from these networks.

2.5.3.5.1.3.4 Network Security Monitoring

Network Security Monitoring provides the operator with Over-The-Air Zeroization, re-key, and key
transfer to a unit. The NM operator has the capability to view and monitor a user’s security parameters
and firewall support. Security alarms alert the operator of possible attacks on the system such as denial of
service. Audit logs records all network security actions.

2.5.3.5.1.3.5 Accounting

Accounting provides a database and reports for user/group statistics such as transmitted/received
messages/bits, completion rate, and to/from traffic flow. The NM operator is able to change the statistics
being captured and reported at any time via a menu driven command.

2.5.3.5.1.4 Compatibility With Network Management Protocols
JTRS network management is distributed among JTRS units and external systems. The interface
mechanisms for NM features are compatible with the JTA Network Management Architecture. The
SNMP, a standard network protocol, provides the structure for JTRS network monitoring and controlling
as depicted in figure 2.5-31. The SNMP Proxy Agent provides the necessary interface between SNMP
versions and “intelligent” external systems that to not comply with SNMP. An intelligent external system
is an external system that provides a capability to obtain network status information and may provide
some level of control (e.g., remote test).

SNMP protocols are supported in the JTRS architecture as Utility Resources. The JTRS NM function,
requires significant level of exchange of information between several service oriented standalone
application systems such as the directory database system, network database system, etc. These
standalone systems will use the Utility Resources for interface and exchange of information.

Similar to the network level itself, JTRS will also have NM function that is required to interface and
exchange with embedded applications for provisioning of requested quality of service. These applications
may be a simple software routines that perform protocol translation, or it could be a standalone system for
transcoding of digitized voice signals from/to CVSD 16 kbps to MELP, or for resource control database.
Again, all exchanges between the NM function and these applications in the JTRS node will be based on
the standardized Utility Resources NAPI.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-188

Network Management Monitoring & Control Station

JTRS

SNMP Agent

SNMP Proxy Agent

MIB
Data Base

JTRS Network
Monitoring &

Control

SNMP Manager

Network Management Data Base
- Configuration - Status/faults
- Performance - Security
- User/Group Statistics - User profile

SNMP “PUT”
(Send data/command)SNMP “GET”

(Receive data)

Operator Console
- Network views
- Alerts
- Status reports
- Command Menus

External System

SNMP Agent/Intelligent Agent

Data Base

101-2.5

Figure 2.5-31. JTRS Network Management Monitor and Control Data Flow

The Management Information Base (MIB)

A key area in the SNMP standard is the Management Information Base (MIB) that provides a hierarchical
description of all network management data and unique enterprise data. MIB resides in the device being
monitored and controlled (e.g., JTRS, external system) and can be read-only, read/write, update-value-
now, update-value-upon-reset, and permanent-update. Figure 2.5-32 presents a sample MIB tree with
JTRS unique information shaded.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-189

Root

ITU(0) ISO(1)

ie-org(3)

DoD(6)

Directory (1) Mgmt (2) Experimental
(3) Private (4)

Enterprise (4)MIB-2 (1)

System (1) ICMP (5) TCP (5) UDP (7) IP (4) SNMP (11)

Internet(1)

JTRS ()

Red SideBlack Side

Network 1 Network xWaveform 1 Waveform x

Frames
Transmitted

Frames
ReceivedFrequency Current State Packets sent

2.5-32

Figure 2.5-32. Sample MIB Tree

2.5.3.5.1.5 Expected Network Management Functions to be supported

In figure 2.5-33, the Network Manager Stations interfaces are shown. They are expected to be ISYSCON
based and are linked to at least one JTRS node in the JTRS network. This section describes some
representative functions expected to be supported within a JTRS node for access by an SNMP NM
Station. They are:

• Advanced Planning Operations

• OTA Rekey.

• Over The Air Waveform Download or Configuration of many radios (e.g., 175 radios
reconfigured in 15 minutes).

• Group identification per organization or mission. The grouping allows multicast communication
similar to Combat Net Radio, with one person sending voice or data to many.

• Validation of software contents, version, and checksum on all radios.

• Coordinated switchover from preexisting configuration to Over The Air loaded configuration at a
predetermined time.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-190

Access
Net

JTRS Core
Network

*Pre-Deployment Configuration
*Monitoring Assets, Links, Statistics
*Dynamic Re-Configuration, Grouping

Access
Net

JTRS

Access
Net

Access
Net

Network Management Terminal

JTRS

2.5-33

JTRS

Figure 2.5-33. JTRS Network Manager Interface
The reconfiguration process is handled with a double-buffering scheme to ensure proper and
synchronized update of a group of radio nodes. All new parameters or software parts are loaded into a
holding buffer area. They can be validated in this holding area, so all configuration parameters will be
updated in a coordinated fashion. The JTRS NM can be sure that all radios to be updated are validated
and ready for a switchover before starting the switchover. The JTRS NM can coordinate the switchover
by commanding that all nodes switch at a predefined synchronized time.

• Real-Time Monitoring and Planning Operations

• Evaluation of link statistics

• React to link losses or changes

• Over The Air Zeroization

• Over The Air Rekey

• Over The Air Software Update (e.g., a Java Applet download)

• Applications to redeploy assets to enhance network performance

• (e.g. voice data has too much delay, so move a faster link node in the data path)

• Update inventory of hardware and software assets

• Dynamic group add/delete per organization or mission. The grouping allows multicast
communication similar to Combat Net Radio, with one person sending voice or data to many.

• Special Operations allow the NM operator to provide/establish unique:

• Command & Control requirements

• Voice/Video conferences

• Setup of Multicast Delivery groups.

2.5.3.5.2 Network Addressing and Name Resolution
The JTRS Networking Architecture needs to provide both Name and Address resolution services. Name
resolution converts a destination name or role into the network address currently occupied by that
individual or function. This level is necessary because of two issues:

• Tactical Mobile Networks will undergo re-organization and reconfiguration based upon the needs
of the situation. In this environment, the network address is not sufficiently permanent. What is

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-191

required is a Host Name which can be bound to different network addresses as things change.
The name always remains constant.

• Human beings work better with names rather than numbers. Even if there were no address
change possibilities, it is easier for a human operator to work with a name rather than a number.

Similarly since not all attached Legacy Networks can be assumed to utilize the JTRS Network addressing
scheme, JTRS Radios as a method within the Network or Legacy specific objects must provide an address
translation method in order to have a common address structure across the JTRS Inter-network.

2.5.3.5.2.1 JTRS Approaches to Addressing
The approach toward addressing within the JTRS Network is to adopt the current widely accepted
commercial IP based CIDR approach. Under this, standard addresses consist of two parts, a sub-network
identifier that identifies the sub-network, and a host identifier that identifies a specific host interface
within that sub-network. Associated with each address is a “mask” which indicates which portions of the
total address are allocated to each part. The JTRS can provide a name resolution service via the
incorporation of a DNS as an embedded application. Address proxies can be provided within the JTRS, a
part of the network/waveform specific objects for address conversions between the IP world and the non-
IP world.

The common JTRS addressing approach could be either IPv4 or IPv6 based. Some of the key addressing
capabilities that IPv6 provides to the IP world are improved mobile IP, improved IP security
(authentication, confidentiality), 128-bit addresses, and flows for real-time video and audio. This
approach fits into the Army’s Tactical Internet that maintains a DNS Command and Control (C2) address
registry at the Division level and interfaces with address translators at the Battalions

2.5.3.5.2.1.1 Overview
JTRS addressing handles static and mobile nodes with data, voice, and video traffic. In addition, JTRS
supports the following addressing capabilities.

• Alias name translation to/from IP Address, Non-IP address, no address (“dumb device”)
• Role addressing
• Geographic addressing
• Group addresses/IP Multicast/Broadcast
• Conference/Point-to-point/Multi-point
• Real-time Flows
• Automatic detection of addressing and registration/de-registration into address tables.

These capabilities extend across networks that are: IP address compliant, Non-IP address compliant, and
No address (“Dumb” device). A “dumb” device is addressed via JTRS port address or non-JTRS node
port address. IPv6, DNS, and address proxies provide the above capabilities. The next two sections
describe the name resolution and the geographic addressing approaches.

2.5.3.5.2.1.2 Name Resolution

IP’s DNS provides the necessary addressing capability for JTRS as shown in figure 2.5-34. A JTRS
network contains at least one DNS server, also called Domain Name Server. Servers are collocated at
selected JTRS nodes.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-192

2.5-34

DNS Server at
Selected JTRS

DNS Data Base
• IP address/Alias name
• Non-IP Address Translation
• Dump Addresses
• Interface
• GeographicAddress Proxy/

Network
Management

Operator

“Dumb”
Device

Interface

Address
Proxy

Standard IP
Protocols

IP
 Address
Interface

Non-IP
Address
Interface

Figure 2.5-34. Name Resolution

The key features of DNS for JTRS are:

• Keeps track of IP names (Aliases) and addresses

• Relates Non-IP addresses to IP addresses/alias

• Relates “Dump” device port and node to IP Address/alias

• Does Domain Name Resolution

• Does Name to address translation

• Does Address to name translation

• Does Address to role translation

• Does Address to geographic area translation

• Keeps IP addresses per group/multicast

• Automates address detection and insertion into DNS server databases. If necessary, the JTRS
NM operator is able to edit the DNS database. For example, relate “dump” device to IP
address/Alias.

JTRS performs routing on the black and red side. Therefore, the DNS is available for black and red
routing functions.

2.5.3.5.2.1.3 Geographical Addressing

With some information, such as Situation Awareness, it is more important where a host is than who or
what a host may be. Geographical addressing stresses the distribution of information to all hosts within a
geographic area rather than a distribution based upon host address or name.

The strategy for a distribution based upon location can either be implemented literally, such as proposed
in GPS Routing, RFC 2009, which actually address packets to a geographic polygon anchored at a
specific point, or via representation such as having multicast addresses which represent geographic
position. Nodes would join the multicast groups of areas they wished to receive information about.

Either approach can be implemented via a JTRS proxy for legacy networks. Assuming a JTRS Radio
knows its own location, then it could be provided a definition of the area of interest of any attached legacy
network and could forward all appropriate geographically addressed data packets to all nodes, or a list of

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-193

specific nodes in that attached network. This capability could be included in the JTRS Architecture as
either a part of the JTRS Common Protocol set or as an embedded utility application.

2.5.3.5.3 Networking Security Considerations

Implied, both within the networking and security descriptions in the ORD, is the need for providing an
acceptable level of network security in addition to data security.

Types of Network Attack

• Traffic or Network Analysis via Passive Eavesdropping/Packet Sniffing—Attacker uses a packet
sniffer to glean sensitive information from data streams between two sites, to steal
username/password combinations, or to identify data sources and destinations.

• IP Address Spoofing—An attacker pretends to be a trusted computer by using an IP address that
is within the accepted range of IP addresses for an internal network or as the source of network
management and control updates.

• Denial-of-Service Attack—Instead of seeking access, the attacker attempts to block networking
service access for valid users. This blockage can be achieved through flooding a network
resource to exhaustion or by crafting packets that cause a resource to perform incorrectly such as
the injection of false routing updates.

The JTRS architecture will incorporate features to protect both the JTRS Network and the Joint Services
Inter-network from the various types of network attack. Typically, the following functionality would be
available for activation, either globally or on specific Inter-network interfaces:

• Address protection

• Routing Table Update protection

• Network Management & Control Validation

• Access Control Lists to restrict:

• Users which can access a particular network or sub-network

• The type of traffic which may enter a particular network or sub-network

• The level of traffic a particular user or application may inject into a particular network or sub-
network.

Within the JTRS Architecture, these protection features can be provided within the router resources on
either the red or black sides as methods which can monitor and restrict the extent, origination point, and
type of traffic either being placed on the JTRS Network core or a particular access network.

2.5.3.5.4 Mobile Hosts

Hosts move. It’s a simple statement of fact leading to some complex questions. There are two basic
categories of mobility - physical and logical - and either can occur without the other.

Physical mobility simply denotes the fact that when radios are mounted in mobile platforms, they are
going to physically move and in doing so change their relationship in terms of direction and distance from
other nodes in the network. Typically this type of mobility, and any interconnectivity changes it causes,
can, and should, be kept hidden from the Inter-network layer. Unless the physical mobility results in the
fragmentation of the RF Network so that there are now two RF Networks where there used to be only one.
This does impact the Inter-network layer. It would not accomplish much to deliver a message to fragment
A when the host being addressed is in fragment B.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-194

Logical mobility occurs when a node changes the sub-network to which it is connected. This can occur
by necessity due to physical mobility as a nodes moves out of range of its original sub-network or through
desire or some other need. For example, SINCGARS radios contain multiple CNR presets and an
operator can “surf” from CNR network to CNR network simply by turning the selection knob on the front
panel without ever physically moving.

JTRS provides a multi-band interface capability and the ability to change RF Network interface selections
potentially beyond anything that currently exists today. When a host changes sub-network affiliation, the
primary problem becomes how does everyone else find its new location? Basically there are three
possible approaches to resolving this issue:

• Change the host IP address to one derived from the address of its new sub-network. This
approach requires binding a new address to name translation in whatever service, typically a
DNS, which is providing name resolution services. Hosts, which have cached name-address
bindings, would encounter a delivery failure if they tried forwarding messages prior to the cache
timing out. This approach has a built-in assumption that there are addresses available in the sub-
network to be joined.

• Maintain the same host address and advertise the host individually through the routing protocol.
Aside from the obvious problems associating large numbers of mobile hosts in this manner, there
isn’t always a guaranteed mechanism in all host sub-networks to discover that a host with an
independent address has physically joined the sub-network. For example, this wouldn’t work in a
commercial ethernet.

• Leave a forwarding address. This is the approach taken by Mobile IP, the IETF approach to
mobile hosts.

Section 6.3 provides additional discussion of Implementation issues associated with mobile hosts and
some of the initiatives underway to resolve them.

2.5.3.5.4.1 Possible Approach to Mobile Hosts in a JTRS Inter-Network
JTRS Gateways could certainly provide Mobile IP and Proxy Mobile IP support to track mobile hosts.
Mobile sub-networks would be tracked via dynamic network topology updates. This mobile host support
could be provided with or without the Route Optimization extension and with or without Location
Registers. The issue becomes discovering that a host has left or joined a specific legacy access sub-
network. Discovery would have to be supported by the legacy network in order for any approach to host
mobility to be effective.

The rationale for following a Mobile IP based strategy for a mobile host is simply that it is the
commercial strategy and ultimately can be expected to be expanded and optimized to support the growing
number of commercial RF Networks. The existence of the Mobile IP IETF working group which is
addressing inter-network host mobility questions is another strong point for adopting IP as the JTRS
Common protocol.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-195

2.6 SECURITY ARCHITECTURE VIEW

2.6.1 Introduction
Security requirements are integrated into the software and hardware architectures and are subjected to the
same constraints of the JOE and hardware framework as other architecture elements. However, the special
endorsement and certification processes imposed on a system’s security elements may limit this approach.
This section discusses these limitations.

2.6.1.1 Layered Approach to Security
The JTRS Security Architecture supports the JTRS ORD security requirements. The Security
Architecture View is a series of security elements that provide “Layers” of Security. For Example,
COMSEC and TRANSEC each provide a security layer to the JTRS; however, together they provide
greater protection for the entire system. Simply put, no Silver Bullet solves all JTRS security needs. It is
the sum of all the layers that meet JTRS security needs. Table 2.6-I shows the JTRS security layers.

The elements of the security architecture are:

• Programmable INFOSEC (with support for legacy approaches)

• Software-based TRANSEC (with support for current approaches)

• Advanced Key Routing to include Single Point Key Fill

• Full interoperability with EKMS, OTAR, OTAZ and OTAT

• Multi-Level Security (MLS) Capability through secure routing of different levels of classified
data through the JTRS

• Secure Software reprogrammability

• Standardized INFOSEC interfaces with other JTRS components

• Maximum the use of COTS and GOTS products

• Physical security (anti-tamper) of the JTRS itself.

The JTRS approach to security is more than those elements embedded in JTRS. JTRS will also interface
with the security elements of deployed host systems, external cryptographic systems, and network
security systems. In addition, JTRS will support security requirements to deploy and operationally use
JTRS in current and new Joint, Coalition, and other missions. Security is part of the total system
including the portions outside the box such as Key Management. The JTRS Security approach includes
key management, operational and technology areas that need to be planned for fielding JTRS.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-196

Table 2.6-I. JTRS Security Layers

Hardware Security Layer • COMSEC
• TRANSEC
• Network Security

Software Security Layer • Trusted O/S
• CORBA Access Control
• Unique COMSEC Control Software
• Software Protection & Secure

Reprogramming
System Level Security Layer (Inside
& Outside the JTRS)

• Multiple Independent Levels of Security
(MILS)

• Key Management
Physical & Domain Dependent
Security Level

• TEMPEST
• Physical Security: Anti-Tamper & Zeroize

2.6.1.2 Mission
The mission of security in the JTRS is to protect the warfighter’s transmission and receipt of voice and
data communications at different classification levels. The system is also required to interoperate with
designated legacy systems, integrate future security systems, support EKMS, and to be user friendly.

2.6.1.3 ORD Required Security Services
The following critical security services are required by the JTRS ORD:

• Authentication - A security measure designed to establish the validity of a transmission,
message, or originator, or a means of verifying an individual(s) authorization to receive specific
categories of information.

• Identification- process to enable the recognition of person/machine passing information.

• Integrity - The property that data, systems, services, and other controlled resources have of not
having been altered or destroyed in an unauthorized manner. The integrity protection
mechanisms ensure logical correctness and reliability of the operating systems and the logical
completeness of the hardware and software.

• Availability-The ability for the warfighter to access information at the time and in the form
needed.

• Access Control – The means to prevent unauthorized access into the JTRS system and the
information it contains.

• Confidentiality- The assurance that the information being passed is not disclosed to unauthorized
personnel.

• Non-Repudiation- the ability to show proof of origin and proof of receipt.

Table 2.6-II shows how these services relate to the security features of JTRS. Appendix G provides
additional information on a phased approach to implement JTRS required security services and features.

Table 2.6-II. Security Services Mapped against JTRS Functions and Features

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-197

Security
Services What is it

Security Architecture
Feature Function

ID &
Authentication

-Originator provides
proof of identity
-Recipient has
confidence in data
source

-Key Management-use of
Public Keys
- Digital Signature
-Key Management, Net
Separations by Key
-Digital Signature

-INFOSEC maintains
ID’s to be attached
with data

-Integrated Key Mgmt
within INFOSEC.
Storage for several
Net keys.

-INFOSEC maintains
signature algorithms

Integrity -Data is delivered
without errors or
alterations.
-Protects the user from
message replays

-OTAR
-COMSEC Algorithm
Synchronization (Pro-
grammable INFOSEC)
- Internal JTRS-Secure
Data Control (MILS)
through CORBA Access
Control, Trusted O/S, and
Tagging data.

-Integrated Key Mgmt
within INFOSEC.
-Depending on waveform
type, functions are
validated between
INFOSEC and Black-side
Processor

Availability -Information available
when needed
-Prevent Denial of
Service

-Software Protection
-TRANSEC & LPI/LPD
Waveforms
-Programmable INFOSEC
-Network Security
-Secure Data Control
(MILS)

-INFOSEC provides
algorithm storage and
selection. Provides
protection against
unauthorized events
using H/W and Trusted
S/W

Access Control -Prevent unauthorized
access to JTRS and its
 internal information.
-Prevent modifications
to
 current radio setup

-Software Protection
- Key Management-use of
Public Keys
- Secure Data Control
-Anti-Tamper
-Trusted O/S
-CORBA Access Control

-Trusted Red OS and
S/W provides protection

Confidentiality -Data is protected
from
 unauthorized access
 between source
 and destination

-COMSEC Link
Encryption
-Internal JTRS-Secure
Data Control (MILS)
through CORBA Access
Control, Trusted O/S, and
Tagging data.

-INFOSEC provides
algorithm storage. Only
valid users can instantiate
required algorithms for a
given waveform.

Non-
Repudiation

-Proof of Participation -Digital Signature -INFOSEC maintains
signature algorithms and
validates signatures.
-Public Key Technology

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-198

2.6.1.4 Security Hardware View

Figure 2.6-1 overlays the security functions of Programmable INFOSEC, TRANSEC and use of a Key
Fill Processing onto the JTRS Hardware Architecture and points to where they reside. Isolating these
functions to two hardware classes improves scalability across domains, flexibility to allow for
adding/subtracting new COMSEC or TRANSEC algorithms, and the ability to do single point key fill and
secure key routing in the JTRS. The diagram also points out that the INFOSEC object interfaces with the
rest of the system in the same way as other objects, and, therefore, will be implemented using
standardized open-system interfaces.

The Security Hardware View provides the common foundation for security hardware for all of the
domains.

Freq
Std.

Power
Amplifier

(PA)

Receiver/

Exciter
(R/E)

Blk
I/O

Black
Proc

INFOSEC

GPS
Rcvr

Blk Red

Quad
Mod

2.6-1

RF

Power
Supply

Power
Supply

Black Side
TRANSEC in Software
(KGV-10 & HaveQuick)
2.6.2.2

Red Side
TRANSEC
(JTIDS, DAMA)
2.6.2.2

Programmable
INFOSEC
Device
2.6.2.1 Key Fill

Processor
2.6.2.3

Figure 2.6-1. Example of typical JTRS Security Hardware View

2.6.1.4.1 Programmable INFOSEC
The security architecture provides a flexible design that maximizes the reuse of common modules,
COTS/NDI, and the use of multiple types of programmable INFOSEC devices such as Cornfield,
Fortezza Plus, and AIM. It is important to be able to embed any of the different types of Programmable
Devices since some of today’s devices are made for very specific applications. For example, the Navy’s
Programmable Embedded INFOSEC Program (PIEP) supports only Cryptographic interoperability with
Submarine Communication Systems. The architecture provides flexibility to allow use of the different
types of devices, permitting greater interoperability; future growth capability by accepting software
upgrades for new or different COMSEC algorithms in the different devices, and the ability to interoperate
with several different COMSEC devices simultaneously.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-199

The architecture also supports the use of External cryptographic systems with and without Programmable
INFOSEC devices. A channel for using external cryptographic devices can be established through the
JTRS Red-side for Black-side transmission or through Black-side I/O.

A programmable INFOSEC device is a set of hardware and software capable of changing COMSEC
algorithms and keys in a tactical environment. This allows the device to interoperate with different
legacy COMSEC devices. For example, one programmable INFOSEC device could securely interface
with DAMA (CTIC/KGV-11), SINCGARS, and EPLRS, while current COMSEC chips can only support
a single function. Additionally, algorithms can be added via secure software (as well as being able to
delete old ones). These devices are also included within the scope of work for COMSEC embedment and
endorsement. The JTRS architecture is designed to accommodate any of the programmable devices that
are available today. These devices come in multi-channel and single channel configurations.

These devices are embedded on the INFOSEC module using a common hardware design to allow
portability between the different domains. The design could, for example, be based on a mezzanine card
that contains the INFOSEC functionality (and most if not all of the INFOSEC boundary). The
Programmable INFOSEC Device (AIM, Fortezza Plus, Cornfield, PEIP, etc.) would be located on the
INFOSEC module mezzanine. The mezzanine is attached to an INFOSEC module Carrier Card that
contains the standard interfaces to the JTRS. The functions on the carrier card can be changed to reflect
waveform, domain, or other warfighter requirements for INFOSEC interfaces. The mezzanine design
allows JTRS to use the same INFOSEC module in multiple form factors without changing INFOSEC
hardware and software; it also allows change or upgrade of the programmable device mezzanine card
without changing other JTRS hardware.

The use of Programmable INFOSEC reduces the number of COMSEC chips, support circuitry, and power
requirements extending to the multi-channel capabilities to domains where size and power are constraints.
Specifically, a multi-channel programmable INFOSEC device provides the ability to securely support
multiple waveforms simultaneously. Because today’s devices only support one waveform securely at a
time, using programmable INFOSEC eliminates the need for multiple COMSEC chips and modules.
Finally, by reducing and eliminating the extra circuitry, power requirements are also reduced. This allows
several domains to reduce their battery power requirements.

There are several major ongoing Programmable INFOSEC device programs such as Motorola’s AIM,
Raytheon’s Cornfield, NSA’s/MYKOTRONIX Fortezza Plus, L3’s Cypris, and the Navy’s PEIP. A brief
description of the devices is found in Appendix G.

Considerations when choosing to implement a specific device for a specific platform are:

• Size

• Power

• Algorithm interoperability

• Algorithm storage

• Number of full/half duplex circuits supported

• Number of keys stored

• Agility in switching between keys

• Internal COMSEC bypass capability for plain text and control

• Type and number of support circuitry required (processors required to operate the device).

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-200

Partitioning the device to a single class within the hardware architecture provides a means to
accommodate a number of devices each of which are embedded in the INFOSEC module with a common
interface into the infrastructure.

2.6.1.4.2 TRANSEC
Transmission Security (TRANSEC) is a measure to protect transmissions from interception and
exploitation by non-crypto-analytic means. TRANSEC helps prevent Interception, Direction Finding,
Signals Analysis, Traffic Analysis, and Jamming. JTRS architecture is capable of implementing several
forms of TRANSEC including Legacy TRANSEC systems; new TRANSEC for LPI/LPD waveforms,
such as the ones being developed on SUOSAS; and systems that may be developed in the future. JTRS
architecture allows the legacy TRANSEC systems to be software based and embedded on the Black-side
of the systems. This allows for operational flexibility to change, update or replace TRANSEC algorithms
as they are upgraded by the services. Both Have Quick and SINCGARS KGV-10 TRANSEC algorithms
have been implemented in software and embedded on the Black-side of several legacy radio systems.
Due to some legacy system requirements Red-side TRANSEC is also supported.

Software-based TRANSEC provides greater flexibility and adaptability to changing tactical operational
requirements by allowing adding, modifying, or deleting TRANSEC modes as required via software
upgrades. The Black-side TRANSEC is allocated to the Modem Module. Red-side TRANSEC in
hardware is also supported and is allocated to the INFOSEC module.

TRANSEC, in software on the Black-side, affects the implementation of the architecture in several areas.
First, the hardware design on the Black-side must include processing requirements and memory on one of
the processors to run the TRANSEC algorithms and to store TRANSEC keys. Normally, the processor is
located in the Modem, but it could be located on the Black-side Processor. Second, the Black-side
implementation must be endorsed by NSA. Normally, the Black-side of any radio system is not
evaluated. In this case, NSA must verify that the TRANSEC operation works correctly, cannot be
corrupted and does not adversely affect the COMSEC operation of the radio. The risk is minimal for
implementing this in JTRS.

2.6.1.4.3 Key Fill Processor
Key Fill Processing is another important element to meet the requirements of JTRS. The architecture
includes in the INFOSEC class an embedded Key Fill Processor. This allows the warfighter to do single
point key fill for internal radio routing and storage of COMSEC, TRANSEC and GPS keys, secure
automatic routing of different types of keys in JTRS, and loading keys while in a power saving mode.
When implemented, the Key Fill Processor will likely contain trusted software that handles the routing
and storage of keys in the JTRS and be a self-contained set of processing device(s) that can be embedded
on the INFOSEC Module (mezzanine or carrier card) or the Red Processor Module. The specific solution
will depend on domain size restrictions where functions need to be combined on common modules. For
example, a Hand Held Domain will want to minimize power and size requirements. Combining the
COMSEC Module and the Key Fill Processor on one module will allow size and power savings.

The rationale for using a Key Fill Processor is that it:

• Allows the warfighter to load keys with a single push of the button vice individually filling each
security device with keys one key at a time (user friendly)

• Allows the use of a single key fill port (saves size and weight) that accepts keys in DS-101 or DS-
102 formats

• Eliminates key fill circuitry inside the JTRS for each type of key going to separate devices and
separate lines for different types of COMSEC/TRANSEC keys (reduces size, weight and
complexity)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-201

• Is adaptable to support legacy key fill devices that require loading one key at a time, such as the
KOI-18 Key Tape Reader

• Facilitates future growth for new algorithms with new sets of keys by providing a “standard” for
key fill.

2.6.1.5 Security Software View

The security view of the software architecture provides the secure capability to support multiple
INFOSEC functions for the warfighter by allowing the reuse of existing software, integrating COTS/NDI
software-such as PCI common bus software, and maintaining a flexible user-friendly system. It
minimizes the use of trusted software in all areas. Additionally, the architecture allows integration of
additional security services such as secure LAN interfaces, active intrusion detection mechanisms, audit,
network security features and public key systems in the future.

The software Security View in figure 2.6-2 illustrates how security functions and services are allocated to
software elements within the JTRS Operating Environment (JOE). Five security elements are shown:

• Software Protection and Secure Reprogrammability (throughout the software)

• Unique COMSEC Control Software (internal to the INFOSEC object)

• Standard COMSEC device interfaces, (drivers to isolate INFOSEC object)

• CORBA Access control (for MILS and MLS)

• Trusted Operating System (O/S) (for MILS and MLS).

RF API

RF API

Black Hardware Bus

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Protocol Stacks

Board Support Package (Bus Layer)

POSIX Operating System

JTRS
Modem

Applications

JTRS
Link, Network
Applications

JTRS
Link, Network
Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
HCI

Applications

JTRS
Modem

Applications

JTRS
Link, Network
Applications

JTRS
Link, Network
Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
HCI

Applications

JTRS Core Framework IDL (“Logical Software Bus” via CORBA)

Red Hardware Bus

Non-CORBA
Modem

Applications

Non-CORBA
Modem

Applications

Non-CORBA
Modem

Applications
Non-CORBA
Modem API

Non-CORBA
Infosec

Applications

Non-CORBA
Infosec

Applications

Non-CORBA
Infosec

Applications

Non-CORBA
HCI

Applications

Non-CORBA
HCI

Applications

Non-CORBA
Host

Applications
Non-CORBA

INFOSEC APIRF

JTRS
Modem

Applications

JTRS
Link, Network
Applications

JTRS
Link, Network
Applications

JTRS
Infosec

Applications

JTRS
Modem
Agent

JTRS
Infosec
Agent

JTRS
Infosec
Agent

JTRS
Host

Agent

JTRS
Host

Applications

Modem NAPI Link, Network NAPI Link, Network NAPI

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

LAN & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

JCF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Protocol Stacks

Board Support Package (Bus Layer)

POSIX Operating System

Non-CORBA
Host API

Access

Control

2.6.3.5

Trusted
O/S

2.6.3.5

Unique
COMSEC Device
Control Software

2.6.3.3

Standard Interface
between INFOSEC
Applications and
Radio Application

2.6.3.4

Across Entire Software Architecture View:
Software Protection and Secure Reprogramming
2.6.3.2

Figure 2.6-2. Security Overlay on JTRS Software Architecture

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-202

2.6.1.5.1 Software Protection and Secure Reprogramming

JTRS is a software radio and as such, the software must be protected against inadvertent and/or malicious
downloading of improper software in the radio. The recommended implementation for this protection is
to use a common method used in commercial and federal government systems - Digital Signature. A
Digital Signature is a set of “bits” attached to a piece of software that verifies it is the correct software for
a given system. The Digital Signature is invisible to the system operation until a software download is
attempted. The Digital Signature then conducts verification of the software before accepting the
download.

The rationale for using Digital Signature protection is that it allows software for JTRS to be developed in
a contractor or government facility, appended with the digital signature and distributed to field sites for
installation. This provides a more flexible, open, and upgradable system to the warfighter. It also
improves readiness by permitting highly reliable field installation of software. Another advantage is
Digital Signature technology is used commercially and in the federal government. There is a Federal
Standard for developing and using Digital Signatures. Finally, Digital Signature technology is relatively
simple and can be developed, used and supported by a variety of agencies.

The Digital Signature authenticates the software to verify it was produced by the correct
agency/manufacturer. When software is downloaded, the Installer resource compares the Digital
Signature on the software with the Digital Signature stored in JTRS. It prevents the inadvertent and/or
malicious downloading of improper software into the radio. For additional security protection, there may
be separate downloads for software used for the Red and Black sides and additional password access
protection can be added.

For implementation, the Digital Signature is appended to the operating system, CORBA system, and the
critical software portions of the JTRS. In Step 2, a complete Use Case scenario for this requirement will
identify specifics on the implementation.

2.6.1.5.2 Unique COMSEC Device Control Software.

COMSEC devices (both programmable and legacy single purpose chips) use unique software to control
their Cryptographic functions (synchronization, timing, encrypt/decrypt and bypass commands for
example). The software language for each device is also normally unique. Step 2 will determine if a
common INFOSEC control definition is feasible, and, if so, include it within the framework. Each
COMSEC supplier would then provide a hardware abstraction layer (driver) with the specific COMSEC
device to implement and provide the standard interface into the JTRS architecture.

COMSEC device can also use programmable device control software. However, instead of the
manufacturer of the software developing and signing the digital signature, NSA will be the signing
authority. This ensures greater protection for COMSEC device software controls. Hardware abstraction
layers as described above are also applicable for programmable device control.

2.6.1.5.3 Standard Interfaces to COMSEC Control Software.
JTRS uses a standard set of APIs to interface the radio with the unique COMSEC control software. APIs
allows different COMSEC devices with different software controls to be “plugged” into the JTRS. The
standard APIs are located on the Red and Black sides of the radio.

2.6.1.5.4 Standard Data Interfaces for Encryption and Decryption

APIs also define the interface by which data packets are sent to and from the COMSEC encryption and
decryption software. Software within the INFOSEC object converts the data to the necessary form and
type required by the encrypt/decrypt device. (Some devices use serial paths, others use parallel.)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-203

2.6.1.5.5 Trusted O/S and CORBA Access Control for MILS and MLS.

For MILS and MLS, Trusted O/S and CORBA Access controls are implemented to maintain assurance,
integrity, confidentiality, and authentication of data flowing through the system. This is addressed further
in Section 2.6.6.

2.6.1.6 MLS
JTRS provides simultaneous connectivity with various systems operating at different classification levels.
Some examples of this include the Tactical Internet operating at a Secret High level while a Have Quick
Air Force Net will operate at a Sensitive But Unclassified (SBU) level. Additionally, during network
operations, many tactical automation systems pass data that is at different classification levels. One
example of this is the Army Maneuver Control System (MCS). The system passes messages that range
from Secret to SBU. JTRS must store, route, and control data at different classification levels and being
used on simultaneous RF links.

The approach to MLS is to “tag” each data element to identify the security level at which it must be
handled. To implement this, a Trusted O/S is required along with CORBA Access Control. Additional
software protection features may also be required to ensure that no inadvertent and/or deliberate changes
are made to JTRS software.

Additionally, as part of MLS approval, JTRS will require a new view on how to manage, control, and
operate a programmable system that operates at different levels of classification in different networks
simultaneously.

2.6.1.6.1 MLS Road Map

Today’s legacy systems support System High Operations. This means use of one or more single function
COMSEC chips, each with a single algorithm, operating at one classification level

The first step to get to MLS is MILS – Multiple Independent Levels of Security. MILS for JTRS is a
system capable of passing data that is at Multiple Levels of Classification through the Red-side of the
same radio at the same time without mixing the data streams. One channel on the system might be SBU
while others are Secret. MILS is a version of MLS that has some of the same characteristics but not all of
the MLS functions (for example MILS does not convert data at one classification level to another
classification level). Specifically, the architecture supports a MILS implementation by providing:

• Secure Control of Data at different classification levels flowing through the JTRS by using a
common commercial data tagging scheme

• Assurance that software functions operate properly by the use of a Trusted O/S

• CORBA access control to assure that only correct functions are accessed by the correct CORBA
software elements

• Host input to the JTRS on classification levels of data being sent into the JTRS for transmission

• A secure means of checking data and JTRS internal control messages going to/from the
Red/Black sides by the use of Trusted Applications.

Figure 2.6-3 illustrates a MILS implementation in JTRS.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-204

Freq
Std.

Power
Amplifier

(PA)

Receiver/

Exciter
(R/E)

Blk
I/O

Black
Proc

INFOSEC

GPS
Rcvr

Blk Red

Quad
Mod

2.6-3

RF

Power
Supply

Power
Supply

Programmable INFOSEC
provides the ability to
encrypt/decrypt different
levels of classified data

Data Tagging
allows different
levels of data to
travel on the
same bus at the
same time

Figure 2.6-3. MILS Implementation Within JTRS

The final step is to go to full MLS capability requiring additional audit capability, covert channel
protection, and security safeguards. Figure 2.6-4 shows the evolutionary path from today’s system high
to future MLS capability.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-205

-All data treated at the same
classification level.

-No Trusted Software

-No software access control

-Requires Hardware and Software
upgrades to go to MLS

-Lacks Scalability between
domains

-Requires Hardware and software
Upgrades to add new Security
Technology.

-Capable of Handling Different Levels of
Classified Voice, Data, Video in Same
Radio Simultaneously.

- Uses Trusted Software (Trusted O/S on
the Red Side)

- Uses CORBA Access Controls

-Software Upgrade to go to MLS

-Used in multiple domains

-Upgrade new security technology with
software

System High-Legacy MILS-JTRS (‘99-’02)

-Add additional security safeguards
for a higher level of trust..

- Add Audit Capability

- Add Covert Channel Protection

MLS-Ultimate Goal (‘02-’07)

Figure 2.6-4. JTRS MLS Road Map

2.6.1.6.2 Alternatives for MILS.
Table 2.6-III presents the alternatives that were examined to achieve secure data control in JTRS. A more
detailed discussion is in the MLS Road Map Paper in the Appendix G.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-206

Table 2.6-III. MILS Alternatives

Alternatives Advantages Disadvantages Comment
System High -Done Today

-Known Process
-Requires Hardware
Only
-Low Risk

-Cannot do MILS
-Requires Hardware
upgrades to get to MILS
-Requires hardware
Upgrades for adding
new security technology

-Does not support JTRS
Requirements.

Physical Hardware
Approach to MILS

-Similar to Existing
Radio Designs
-No Trusted Software
-Low Risk

-Requires lots of
hardware to support
multiple Interoperability
Requirements (SW&P
impact)
-Not portable between
domains
-Requires Hardware
upgrades to get to MILS
-Requires hardware
Upgrades for adding
new security technology

-Does not provide a
good path to achieve
MLS without major
hardware changes to the
JTRS

Software Approach
to MILS.
(Software Based
Data Control
Scheme using data
tagging)

-Flexible
-Portable between
domains
-Minimizes Hardware
Dependency
- Software Upgrades to
get to MLS
-Software upgrades to
add new security
technology

-Requires Trusted
Software

- This alternative
allowed the architecture
to grow from MILS to
MLS without throwing
away the radio, doing
major hardware
redesigns and starting
over. No other
alternative provided this
flexibility.

2.6.1.6.3 Selection Criteria and Findings
The rationale for selecting the data-tagging alternative was based on the following criteria:

• Flexibility - The security architecture supporting multiple domain implementations and allowing
reprogramming or hardware upgrades without rebuilding the system.

• Minimum Trusted Objects - The security architecture with the minimum the amount of Trusted
Objects (Hardware and Software) in JTRS would allow a greater use of COTS products. Also
minimizes areas requiring NSA endorsement or certification from other agencies.

• COTS - Using COTS allows the system to take advantage of rapid advances in technology in the
commercial market and minimize acquisition costs.

• Programmable INFOSEC Devices – Being able to embed and utilize any of the family of
programmable INFOSEC devices provides for new capability without new hardware.

• Achieve MLS - The alternative must support the ability to achieve MLS without a redesign or
rebuild of the JTRS.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-207

• Permit Technology Insertion - the ability to integrate new security technologies as they are
fielded.

The software solution to MILS was the clear best alternative. It provided the only direct path to MLS.
Hardware solutions for MILS could never reach an MLS capability without redesign of the Red-side of
JTRS and subsequent software equivalent to a tagging approach. A trusted OS and some trusted
applications are likely required for MLS and by using them first for MILS provides experience in a less
strict endorsement environment.

2.6.1.7 Key Management.
JTRS is required to operate within the existing key management system for distributing, storing, and
managing electronic COMSEC, TRANSEC, Public and GPS Keys. The requirements, procedures, and
guidelines for JTRS Key Management follows National Security Policy Directives; Distribution and Key
Control Policy, Directives, Regulations and service doctrine. Generally, JTRS will operate at levels
ranging from SBU to Secret. These different levels all require and utilize separate and distinct keys to
help provide protection for voice, data and system control information. The only architectural decision
involving Key Management was to allocate it functions to the INFOSEC hardware class and to the
software INFOSEC class object. For implementation then, only one module will be involved in Key
Management, simplifying the development and reducing overall cost.

2.6.1.7.1 Key Management Critical Functions/Elements.
These are the important requirements of key management and their origin that JTRS will implement:

• Key distribution, storage and operational use IAW DoD policies and regulations (JTRS ORD)

• Ability to do OTAR/OTAZ/OTAT (JTRS ORD)

• Single Point Key Fill and Single Key Fill for Legacy Key Fill Devices (such as the KOI-18 Tape
Reader) (JTRS ORD derived – operator ease of operation)

• Advanced Internal JTRS Key Distribution Scheme for COMSEC, TRANSEC and GPS Keys
(JTRS ORD derived – operator ease of operation)

• DS-101/102 Compatibility (JTRS ORD)

• Compromise Recovery (JTRS ORD).

JTRS uses COMSEC, TRANSEC, GPS, and potentially other key systems to provide connectivity for the
warfighter on the battlefield. Each of these keys must be loaded securely into JTRS. Size, weight and
power constraints in many of the domains restrict multiple key fill paths. In addition, for ease of
operation, a single path is highly desirable. Therefore, a single point key fill method that allows for
secure key fill and key routing to the proper location(s) inside the JTRS is recommended. A Trusted Set
of software embedded in the INFOSEC class object (Key Fill Processor) will provide routing and
temporary COMSEC, TRANSEC, and GPS key storage capability. Using a single point key fill port, it
will have capability of receiving and storing DS-101/102 fill data from a AN/CYZ-10, KYK-13, KOI-18,
KOK-22, and KYX-15. JTRS will be capable of system rekey by two means: Direct Fill or OTAR (Over-
The-Air-Rekey). With the Key Fill Processor as a programmable element, integration of Public Key and
new key fill technology will be possible as it is fielded in the future.

2.6.1.7.2 Key Management Limitations
This section identifies limitations in current key management methods as they apply to a programmable
multi-channel JTRS. These are not architectural issues, but if resolved would improve support for the
operational users of JTRS. Additional information on these topics is provided in Section 6.5 and
Appendix G.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-208

2.6.1.7.2.1 Keying Methods

• No Integrated Automated Tactical OTAR System - Automates the management and distribution
of multiple sets of keys in a tactical environment. Such a system exists for DES and other Type
III Federal Government systems, but there is no system for Type I tactical systems.

• Limited Approved OTAZ Systems - There are very few approved OTAZ schemes for DoD radio
systems and no standardized method.

• No Single Key-Fill Device - DoD currently uses several types of key-fill devices to support the
variety of communications security systems fielded. When these security systems are
implemented in JTRS, the same multiple key-fill devices will be required unless a single device is
developed.

2.6.1.7.2.2 Operational Issues

A Key Management Plan will be be developed in Step 2 to address the following JTRS operational key
management issues:

• Key management for JTRS operating by themselves and/or in a mixed network environment.

• Key management in integrated Joint and Service unique operations. JTRS will carry more and a
greater variety of keys than legacy radio systems.

• Developing a common compromise policy and recovery method. JTRS will have multiple keys
and, if compromised, a streamlined method for notifying different keying authorities would
reduce risk of further compromise. This would include all JTRS units including high risk units.

2.6.1.8 COTS Impact
JTRS implementation will rely heavily on commercial, off-the-shelf (COTS) software and hardware
components. These systems typically have relatively weak, commercial-grade security or no security at
all. DoD has invested in limited high assurance components for specific purposes, such as multilevel
security. JTRS security must be scaleable to accommodate different levels of threat and therefore must be
able to use these high assurance components in environments that warrant it. In general, however, JTRS
security must be implemented to build a strong system around mostly weak COTS components. The
architecture uses standard interfaces for security components to ease integration with COTS components,
provide flexibility in the choice of security service implementations, and support evolution as improved
security technologies and services become available.

2.6.1.8.1 CORBA Security
In Section 2.2, CORBA was described is the “software bus” for JTRS. Through CORBA, applications
software can access any portion of the JTRS software; and thus an access control mechanism is needed to
implement MILS and MLS functionality. Access control ensures that any CORBA access request does
not compromise information within JTRS. One example of this would be a Black-side Processor request
for raw unencrypted data from the Red Processor to transmit out on a channel. The access control
mechanism would deny that request as violating imposed security rules. (Note: The policy
implementation is flexible enough to allow discrete operator actions to do such an action. But this would
be an implementation decision). CORBA access control is taken from commercial standards and has
been implemented in several forms.

2.6.1.8.2 Trusted O/S
The JOE uses real-time commercial embedded operating systems to provide multi-tasking, multi-
processing. For a MILS and MLS implementation using the tagged data approach, a Trusted OS on the
Red-side is needed to provide secure control of data at different classifications. The Trusted OS performs
security checks on subject and object interaction, protects program address spaces, and supports security

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-209

requirements for integrity and availability. The security features must be transparent to the JTRS user and
portable to common COTS processing devices. Section 6.5 and Appendix G provide additional
information on required OS features and functions.

Several Trusted OS are available, but none provide the POSIX interface required by the architecture.
There are two fundamental choices: add POSIX and real time functions to existing DoD-funded or
proprietary Trusted OS, or add required security features to make POSIX-compliant commercial OS
trusted. A trade study is recommended during Step 2 to determine the most cost-effective approach.

2.6.1.9 NSA Approval/Validation of the Architecture

Step 2 will validate the JTRS architecture for compliance with the ORD and will include validation of the
security approach described in this document. Validation for security means that:

• The security portions of the architecture are based on sound security principles

• Generating a Security Implementation Plan and evaluating it to show it provides the security
needed to protect data/keys in JTRS

• The hardware/software design is based on sound security practices

• Developers who implement a JTRS architecture compliant system have high confidence of
receiving quick NSA endorsement.

Validation of the security approach of the JTRS Architecture provides a security model for developers
that has the potential for greatly reducing the endorsement time. JTRS implements multiple legacy
systems that were separately endorsed; the JTRS Architecture development can be used to provide a
standardized approach.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-210

2.7 IMPLEMENTATION EXAMPLE

2.7.1 Introduction
The architecture description presented in Sections 2.2 – 2.6 provides abstract views from the perspective
of Software, Deployment, Application, Networking, and Security. Each view gives detailed and essential
insight into a particular aspect of the system.

This section goes beyond architecture definition and illustrates an implementation of the architecture with
a full example. This example is built on the Tactical Internet example given in Section 2.5.2.3.1, which in
turn comes from a Force XXI Battle Command Brigade and Below (FBCB2) scenario. It shows how the
hardware classes of the Hardware Architecture and software objects and classes of the JTRS Operating
Environment and Core Framework, along with the Rule Set are used to design a radio for the ground
mobile domain that meets the FBCB2 requirements. Further, this example illustrates how requirements
imposed by simultaneous operation of multiple channels (processing, bus loading, and memory
considerations) are factored into the implementation of the architecture. This implementation example
also shows how application of the Rule Set can lead to system designs that foster hardware commonality
and reuse across domains.

In the following example, Section 2.7.2 describes a FBCB2 networking scenario in the Tactical Internet to
provide wideband multimedia services down to the platoon command echelon and describes radio
requirements to do this. Section 2.7.3.1 shows how a JTRS vehicular radio will be used to meet the
FBCB2 requirements and Section 2.7.3.2 briefly describes how the JTRS Architecture Definition is used
to define this radio. Section 2.7.3.3 presents a step by step design example. Section 2.7.3.4 discusses
how the JTRS Architecture eases platform integration and Section 2.7.4 summarizes the benefits of using
the JTRS Architecture.

2.7.2 FBCB2 Operational Example

The FBCB2 example’s objectives are to enhance the Tactical Internet to support wideband multimedia
services down to the platoon command echelon. The need is to provide to the platoon command
communications that support the additional services of video conferencing, full-motion video, white
boarding, and rapid distribution of annotated still photographic images. At the same time, all critical
Command and Control (C2) and Situation Awareness (SA) information flow must be maintained.

A minimum of four channels are needed to meet the FBCB2 example’s requirements: one EPLRS
channel, two SINCGARS channels, and one (future) JTRS Wideband Digital Waveform channel. The
EPLRS and SINCGARS channels support existing services and the Wideband Digital Waveform is used
to provide the services needed to create a Battalion Multimedia Network.

The JTRS Radio configuration and use to meet the FBCB2 example’s requirements are:

• RF Channel #1 - EPLRS Division Backbone Interface, 420-450 MHz

• RF Channel #2 - SINCGARS/E-SIP CNR Interface, 30-88 MHz

• RF Channel #3 - SINCGARS/E-SIP CNR Interface, 30-88 MHz

• RF Channel #4 - JTRS Multimedia Network Interface, 800-2000 MHz

• I/O Interface #1 - RS-423 for connection to the Applique Host

• I/O Interface #2 - USB for connection to the Multimedia Host

• I/O Interfaces #3 and 4 – SINCGARS PTT Voice

• GPS Receiver Channel – Current Own Location

• Internetworking – Data traffic routing between channels and interfaces.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-211

Figure 2.7-1 shows the current FBCB2 Platoon Network on the left with existing SINCGARS and EPLRS
equipment and the same Platoon Network on the right with the added capability of the Battalion
Multimedia Network that results from the addition of the JTRS equipment and the Wideband Digital
Waveform.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-212

INC

SINCGARS

SINCGARS

INC

EPLRS
FBCB2 Division

Backbone

EPUUEPUU

SINCGARS

SINCGARS

Applique INC

SINCGARS

SINCGARS

Applique

AppliqueSINCGARSINCApplique SINCGARS

Platoon Net

Company Net

Platoon Leader Platoon Sergeant

Wingman Wingman
2.5-8

SINCGARS

SINCGARS

JTRS

EPLRS Division
Backbone

Applique

AppliqueSINCGARSSINCGARS

Platoon Net

Company Net

Platoon Leader Platoon Sergeant

Wingman Wingman

2.5-12

JTRS Battalion
Multimedia

Network

MM Host

JTR Applique

MM Host

INC INC

Updated
FBCB2
Platoon
Network

Current
FBCB2
Platoon
Network

2.7-1

Applique

Figure 2.7-1. Installation of JTRS adds Battalion Multimedia Network capability while maintaining existing capability

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-213

2.7.3 Ground Forces Domain, Vehicular Configuration

2.7.3.1 JTRS Vehicular Radio Requirements
Since the FBCB2 example is a ground forces domain scenario, it starts with the Vehicular Deployment
View from Section 2.3.5. The vehicular radio configuration requires five channels and also specifies that
I/O resources be available for each channel. Since the FBCB2 Operational Example requires four RF
channels and four I/O channels, there will be one spare RF channel and associated I/O channel. These
unassigned hardware resources are available for configuration of an additional channel, or as backup
resources, should resources in use fail.

2.7.3.2 Using the Architecture Definition for the Vehicular Radio
Software objects used to implement this JTRS radio are derived from the software classes defined by the
JTRS Architecture, including an implementation of the JOE, which includes the JCF. Rules for
implementing software objects are presented in Section 2.1.1.3. For implementing this JTRS Vehicular
radio an embedded real-time POSIX compliant OS is chosen for each processor where possible, CORBA
2.2 is chosen as the middleware and C++ is chosen as the application implementation language.

The implementations of the SINCGARS and EPLRS waveforms are drawn from the Applications Views
in Section 2.4. The software objects used to implement these waveforms are shown in figures 2.4-5 and
2.4-12. A similar selection of software objects would be done for the JTRS Wideband Digital Waveform.
The FBCB2 networking application is drawn from the Networking View and is shown in Figures 2.5-9
and 2.5-10.

The process by which hardware objects are derived from hardware classes is best described as an iterative
analytic process in which applications (waveform, networking, and JCF) and the JOE are partitioned onto
a set of hardware objects (Modem, Processor, INFOSEC, I/O, Interconnect, etc.) and the hardware
resource requirements for each hardware object are quantified. A summary of the iterative steps follows:

1. Establish/modify the overlay/partitioning of each application (waveforms and networking)
on a set of hardware objects. Begin with a set of generic hardware objects derived from the
Hardware Classes and use the software objects from the waveform application views and
network application.

2. Quantify the hardware resource requirements (processing, memory, gatecount, and
interconnect data load) of each application element for each hardware object.

3. Factor in the overhead for the JOE on each hardware object.

4. Establish total resource requirements (processing, memory, gatecounts, and interconnect
data load) for each hardware object. Include margin for growth, technology insertion, and
simultaneous operation.

5. Assign values to hardware object attributes (form-factor, interfaces, and environment)
through application of the Architecture Rule Set.

6. Perform analysis (such as queuing modeling, timing analysis (see Appendix D for timing
analysis examples), or heat transfer modeling) to verify that the solution will meet the
performance requirements (throughput and latency, or operating temp range, etc.) of the
applications and environment under any requirement for simultaneous operation.

7. If a realizable and efficient solution has not been attained, iterate back through the steps
making modifications in partitioning and selection of hardware object attributes.

The process of applying the JTRS Architecture Definition will evolve and be refined as the Architecture
is extended in Step 2.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-214

2.7.3.3 Designing the Vehicular JTRS Radio

The first step in the process is to do an initial application software overlay on a set of generic hardware
objects. Subsequent steps (2-4) quantify total hardware resource requirements that includes all
waveforms, networking, JOE overhead, and margin allowances. Then the Architecture Rule Set is
applied in Step 5 to assign values to hardware object attributes. Step 6 then completes the design process
by verifying, through analysis, that the selected design meets required performance.

2.7.3.3.1 Step 1: Application Software Overlay on Hardware
Figure 2.7-2 illustrates an initial laydown of the applications software on hardware objects.

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-A
2-215

Prgmbl
Modem

Prgmbl
Modem

Prgmbl
Modem

Prgmbl
Modem

Black GPP Processor Red GPP Processor

EPLRS
Modem

Resource

SINCGARS
Modem

Resource

SINCGARS
Modem

Resource

JTRS WDW
Modem

Resource

Black
INFOSEC

Agent
Resource

Red
INFOSEC

Agent
Resource

JTRS
INFOSEC
Domain

Resource

EPLRS
Modem
Agent

SINCGARS
Modem
Agent

SINCGARS
Modem
Agent

JTRS
WDW

Modem
Agent

JTRS
WDW
Link

Resource

INFOSEC

EPLRS
Link

Resource

EPLRS
Net

Resource

SINCGARS
Net

Resource

SINCGARS
Link

Resource

SINCGARS
Link

Resource

SINCGARS
Net

Resource

JTRS
WDW
Net

Resource

CVSD
Audio

Resource

JTRS
Internetwork

Router
Resource

UTR
Server

CVSD
Audio

Resource

I/OMODEM

USB
Agent

Resource

RS-423
Serial

Resource

2-2.7

USB
I/O

RS-423
I/O

Audio
I/O

Audio
I/O

Programmable
INFOSEC

GPS

GPS
Agent

Resource

INFOSEC HCI

JCF

InternetBlackModem

COTS RF

Figure 2.7-2 SW Overlay on HW for Vehicular JTRS Radio

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-217

Table 2.7-I shows the hardware and application software classes and the instantiated objects derived from
these classes to implement the FBCB2 example.

Table 2.7-I. HW and SW Classes and Objects for FBCB2 Example

Hardware Software
Class Instantiated Objects(s) Class Instantiated Object(s)

Modem Programmable Modem
Programmable Modem
Programmable Modem
Programmable Modem

Waveform Modem Resource
Waveform Modem Resource
Waveform Modem Resource
Waveform Modem Resource

EPLRS Modem Resource
SINCGARS Modem Resource
SINCGARS Modem Resource
JTRS WDW Modem Resource

Processor Black GPP Processor

Red GPP Processor

Modem Agent Resource
Modem Agent Resource
Modem Agent Resource
Modem Agent Resource
Waveform Link Resource
INFOSEC Agent Resource
Waveform Link Resource
Waveform Network Resource
Waveform Link Resource
Waveform Network Resource
Waveform Link Resource
Waveform Network Resource
Waveform Network Resource
Router Resource
Utility Resource
Serial Resource
Audio Resource
Audio Resource
Host Agent Resource
INFOSEC Agent Resource

EPLRS Modem Agent
SINCGARS Modem Agent
SINCGARS Modem Agent
JTRS WDW Modem Agent
JTRS WDW Link Resource
Black INFOSEC Agent
Resource
EPLRS Link Resource
EPLRS Network Resource
SINCGARS Link Resource
SINCGARS Network Resource
SINCGARS Link Resource
SINCGARS Network Resource
JTRS WDW Network Resource
JTRS Internetwork Router
UTR Server
RS-423 Serial Resource
CVSD Audio Resource
CVSD Audio Resource
USB Agent Resource
Red INFOSEC Agent Resource

INFOSE
C

Programmable
INFOSEC

INFOSEC Domain Resource JTRS INFOSEC Domain
Resource

I/O I/O Module (No Software) (No Software)
GPS GPS Module Access Agent Resource GPS Agent Resource

This initial laydown completes Step 1 of the process for specifying hardware objects.

2.7.3.3.2 Steps 2 through 4: Quantifying Total Hardware Resource Requirements
Subsequent steps (2-4) quantify total hardware resource requirements that includes all waveforms,
networking, JOE overhead, and margin allowances. Then, the Architecture Rule Set is applied in Step 5
to assign values to hardware object attributes.

2.7.3.3.3 Step 5: Application of Rule Set to Hardware Object Selection
At this point, all hardware resource requirements are known. It is now time to assign hardware objects
attributes by application of the Architecture Rule Set. This step is explained in this section and the results
are shown in figure 2.7-3.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-218

RF
Class

Modem
Class

Processor
Class

GPS
Class

INFOSEC
Class

I/O
Class

Power Supply
Class

CSI
Class

Frequency
Standard Class

2.7-3

JTRS Hardware

Attributes
 • Support Channels
 - EPLRS, SINCGARS
 -JTRS WDW, Networking

Chassis
Super Class

HW Module(s)
Super Class

• 3U
• Conduction Cooled
• 28 VDC
• -40C - +55C

Attributes
• 3U
• Conduction Cooled
• cPCI
• -40C - +70C

Attributes

• 5Rx/Tx Channels
• 4W Output Power

Attributes
• 2 Channels/modem

Attributes
• COTS SBC
• Use PMC Mezz

Attributes
• 8 HDX chnls/mdl
• 2

Attributes
• RS-423
• USB
• MS-188-114
• DS-101

Attributes

• Double Width
• 100ms dropout

Attributes
• 12 Channel
• Military

Attributes
• 1PPM

Attributes
• cPCI

Attributes

Figure 2.7-3. Hardware Object Definitions for Vehicular JTRS Radio

The Form Factor for the Chassis and Modules is chosen using the Form Factor Rules given in Section 2.1.
3U is chosen for the Chassis and Module objects because it is an open, commercial standard that is
compatible with the expected platform size and volume constraints, and can be used in a conduction
cooled application. Further, it is expected that 3U form factor modules can be used in other domains.

Interface Standard for the Module class is selected using the Interface Rules given in Section 2.1. cPCI is
chosen because it provides state-of-the-art performance and flexibility and is an open, commercial
standard that is suitable for reuse across domains and is supported by POSIX compliant Operating
Systems.

The Environmental Performance of the Module class is specified to include –40oC to +70oC operation.
This is compatible with the Chassis and platform requirements and is expected to be suitable for use
across domains. This operating temperature range is also compatible with COTS products.

All hardware modules in the radio inherit the 3U form factor, the conduction cooling, the operating
temperature range of –40oC to +70oC, and the cPCI interface from the Module Super Class.

Other module attribute assignments are made to maximize COTS availability, potential reuse across
domains, and to meet required performance levels.

2.7.3.3.4 Step 6: Performance Analysis
At this point all hardware resource requirements are known (from Steps 2-4), and hardware object
capabilities have been set (Step 5), so the analysis described in Step 6 can be performed to determine if
required system performance can be met. This analysis includes queuing analysis to verify that the

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-219

performance requirements for the applications can be met given the specific requirements for
simultaneous operation of the applications.

2.7.3.3.5 Step 7: Iteration and Completion

If a realizable and efficient solution has not been attained, iterate back through the steps making
modifications in partitioning and selection of hardware object attributes. Once a realizable and efficient
solution is attained, the goal of specifying a Vehicular JTRS radio has been achieved.

The Deployment View for the Ground Domain, Vehicular Configuration given in figure 2.3-7, Section
2.3.5, provides an example selection of hardware objects that is representative of hardware object
selection that will meet the requirements of the FBCB2 Operational Example.

2.7.3.4 Platform Integration
In the FBCB2 Operational Example, when the Vehicular JTRS radio that was just designed is installed,
impact upon vehicular platforms is kept to a minimum: The existing SINGCARS Vehicular Amplifier
Adapter (VAA) and the EPLRS EPUU are both removed from the platform and are available for
redeployment. The JTRS radio is designed to fit within the footprint and volume of the SINCGARS
VAA which contains two SINCGARS radios and Internet Controller (INC). The Multimedia Host can be
mounted in the location vacated by the EPUU. The result is that existing capabilities have been
maintained while adding the power of the Battalion Multimedia Network. This has been accomplished
while maintaining very low impact on the vehicular platform. Figure 2.7-4 shows the current
configuration of communications equipment in a Command Vehicle and the resultant equipment
configuration in the same Command Vehicle after installation of the JTRS radio and Multimedia Host.
This illustrates the inclusion of new capabilities with minimal impact on the vehicular platform.

The JTRS will adapt its RF interface to comply with installed antenna and the I/O module will comply
with the existing Applique Interface. This demonstrates how platform integration for the JTRS radio is
streamlined by the provision within the JTRS Architecture to provide platform specific I/O through the
I/O module class: Changes in hardware objects to accommodate platform specific I/O are isolated to the
I/O class to the extent possible, thus minimizing the impact on other radio hardware.

2.5-7

Appliqué
EPUU

SINCGARS

INC

1 2 3
4

0

5 6
7 8 9

1 2 3 1 2 3
4

0

5 6
7 8 9

1 2 3

SINCGARS

2.5-11

Command Vehicle Comm Equip
with JTRS Radio

Appliqué

Multimedia
Host

RS-423

USB

JTRS Radio

Current Command Vehicle
Comm Equipment

2.7-4

Figure 2.7-4. Installation of JTRS Radio with Minimal Impact on Platform

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-A2-220

2.7.4 Summary

This Implementation Example illustrates the process of designing a vehicular radio to meet the
requirements of the FBCB2 Operational Example and to meet the full requirements of the Ground Forces
Domain. Selection of Hardware and Software objects through application of the Architecture Rule Set
has been presented and an example design of a vehicular radio has been detailed: An example laydown of
application software on hardware objects was presented, system performance analysis was discussed, and
hardware object attribute assignment was illustrated.

The JTRS Architecture relies heavily on Open Standards and promotes and facilitates COTS hardware
and software reuse by providing class definitions and rules by which hardware and software objects are
defined. The JTRS Architecture will provide a well defined hardware and software framework for
waveform and networking applications that is flexible enough to easily adapt to both legacy (e.g., EPLRS
and SINCGARS) and new waveforms (future JTRS Wideband Digital Waveform) with common
implementation elements, and is open enough to accommodate growth and technology insertion when
completed in Step 2.

JTRS Application Software developed in accordance with the hardware and software framework
definitions and Rule Set for one domain will easily be ported to a JTRS radio implementation for other
domains.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-B-1

Cosite Information

B.1 Cosite

B.1.1 Cosite Issues

The objective of this section is to impart an understanding of the challenges of operating
multiple radio channels in close proximity to one another, including those challenges unique to a
multi-channel unit, to define the attributes that the JTRS must have to effectively deal with those
challenges, and to describe the unique cosite interference mitigation opportunities that the JTRS
offers relative to a collection of legacy radios.
B.1.1.1 Coexistence with Unmodified Legacy Systems

External devices will be necessary to achieve cosite mitigation when operating jointly with
unmodified legacy systems. The external devices are frequency agile filters and interference
cancellers. Control information for these devices is not generally available from legacy systems.
The lack of control information causes the external devices to be less effective and require the
devices to generate such information from the signals transmitted. The transmit-receive state,
typically a PTT level, is absolutely necessary from the legacy transceivers.

The external cosite mitigation devices can cost more than the legacy systems that are protected,
particularly when only legacy systems are involved. However, tight control of phase noise and
low wideband noise from the JTRS transceiver channels will minimize the JTRS impact on
legacy systems. Likewise, the cosite hooks required of the JTRS transceivers will allow the
legacy system interferers to have minimal impact on the JTRS transceiver channels (when the
legacy systems are augmented with external cosite mitigation).
B.1.1.2 Internal Transmit-Receive Isolation

The physical architecture must enforce isolation between the high-power portion of any
transmit path and the minimum-detectable-signal portion of all receive paths. Such enforcement
may include limiting the available transmit path power while in the vicinity of a receive path.

The path losses of communication links necessarily result in large differences in transmit
power and the minimum detectable signals. The objective of the physical architecture is to
maximize the propagation portion of such isolation. While physical separation is to be utilized
wherever possible, eventually the signals arrive in the small confines of the multichannel radio
transceiver. Interference cancellation and high -Q, frequency-agile, filters are typically used
externally to and among the transceivers. Internally, the application of these techniques is no
longer feasible or effective. Physical isolation and shielding must be relied upon to obtain the
necessary isolation. Isolation levels of the order of 60 dB result from normal design practices.
Isolation to 100 dB can be obtained with very special precautions. Once the isolation is
achieved, an isolation maintenance program must be instituted in order to assure performance
after repair.

The physical and functional architectures must assure that differences in signal level between
nearby paths do not exceed 100 dB. If necessary, the power level must be limited until the
transmit path can be operated upon by interference mitigation techniques.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-B-2

B.1.1.2.1 Receiver Dynamic Range

The receivers of the multichannel JTRS radio will be faced with the onerous task of processing
multiple large signals while they are attempting to detect very low level signals. The poor
antenna isolation on tactical platforms assures that substantial power from local transmitters is
present in the front end of the receivers.

We will use the usual example of 50-Watt (+47 dBm) transmitters and a minimum detectable
signal level of –115 dBm for the receivers. Some of the platforms will be faced with ten
independent channels. Given a tactical platform isolation level of from 6 to 40 dB, each
interfering transmitter can apply from +7 to +41 dBm of signal to a victim receiver. When we
consider that up to nine interferers could be transmitting simultaneously, we have to add 9.5 dB
so that the interference level could reach higher. However, the 10-channel system is more likely
on a platform of the 40 dB isolation variety. We then use the +41 dBm as the maximum
interfering signal level. The receiver must be able to handle both the +41 dBm and the –115
dBm signal levels simultaneously.

We therefore must have receiver front-ends that can handle +41 dBm (12.6 Watts). The
dynamic range requirement of the receiver front end is 156 dB. Given the usual LNA gain of
around 14 dB, the LNA must be a 316 Watt amplifier. Given the nearly 100% duty cycle of the
receiver, the high powered LNA can seriously be considered for larger platforms (not man-
packs) with sufficient prime power (1 kW long-term/channel) capability.

The above stringent requirements can be mitigated somewhat by improving antenna isolation.
B.1.1.2.2 Control of Phase Noise and Modulation Sidebands

The extent of the transmitted spectrum in close to the carrier frequency is of great concern for
multichannel/multiradio installations. The signal designers attempt to place as much of the total
transmitted power into the assigned channel bandwidth as is possible. Because of this,
modulation schemes are graded on a bits/hertz metric. For frequency regimes outside of the
assigned channel but still in close to the carrier, other noise mechanisms dominate the spectral
occupancy. We concern ourselves with the spectral occupancy on multichannel/multiradio
systems because the units transmitting leak (unintentionally) over into units attempting to receive
very low signals. Minimal antenna isolation is the principal cause of such leakage.

Typical installations will have 50 W (+47 dBm) transmitters collocated with receivers
attempting to receive –115 dBm signals. In order for such systems to cohabit the same or nearby
platforms, isolation the order of 162 dB is required. Antenna separation limits tactical platforms
to the range of 6 to 40 dB of isolation. Therefore, we depend on frequency separation to give us
the 122 to 156 dB of isolation we need for successful simultaneous operation of the transmitters
and receivers. Our problem then becomes one of controlling the spectral width of the interfering
transmitter at the –122 to –156 dBc portion of the spectrum. Good control of the transmitting
spectrum width in that low region will minimize the number of channels unavailable to the
victim receiver(s), or blocked by the interfering transmitters. We will observe the amount of
blocking signal in a bandwidth equal to that of the victim IF band.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-B-3

The modulation sidebands can contribute to the width of the spectrum in the applicable range.
Without premodulation filtering the terminal portion of the sidebands typically roll off at –12 dB
per octave of offset frequency from the carrier. Premodulation filtering will have to be included
if the modulation is not to rule the affected spectrum.

The JTRS program will have to establish an objective for the number of blocked channels to be
permitted. For hopping systems, the number of blocked channels contributes directly to the
long-term bit error rate. The coding system for hopping signals must include interleaving to ride
through the blocks associated with phase noise.
B.1.1.2.3 Digital to Analog Converter Word Length

When transceivers are collocated a nearby transmitter becomes a source of interference for a
receiver. The transmitting interferer will have a wideband noise characteristic that is essentially
white noise. Such noise will block attempts to receive low signals on victim receivers
characterized by poor antenna isolation from the interfering transmitter. The principal source of
such noise is amplification in synthesizers and power amplifiers. The two effective methods of
combating such noise are antenna isolation and frequency-agile, or tracking, filters. The filters
add insertion loss and size/weight. The overall system cost (power consumption, heat
generation, weight, volume, etc.) of such high-power filters is staggering.

The advent of digital radios introduces another source of wideband noise. When technology
permits, the entire transmitting signal generation can be accomplished digitally. Even the
wideband noise filtering can be done this way if the word, or sample, length of the digital-to-
analog converter (DAC) is sufficient to place quantization noise below the signal expected by the
neighboring receivers. The quantization noise appears as essentially white noise at a level below
the intended carrier signal that becomes 6 dB greater with each additional bit of word length.

Tactical platforms limit opportunities for antenna placement. Ideally, one would place the
interfering transmitter antennas as far removed from the sensitive, victim receivers as the
platform will allow. Smaller platforms such as tank turrets permit an isolation of merely 6 dB or
so, while larger platforms such as ships and airplanes can achieve 40 or more dB of isolation.

As an example, we have a 50 W (+47 dBm) interfering transmitter and a victim receiver
attempting to receive minimum signals at –115 dBm. On the smaller platforms the 6 dB of
isolation would require the wideband noise to be at –156 dBc at the transmitter (as measured in
the victim receiver’s IF bandwidth). A DAC word length to accommodate the low noise would
be 26 bits. The larger platforms with 40 dB of antenna isolation would require the wideband
noise be at –122 dBc corresponding to a word length requirement of 21 bits. The length
requirement is actually more stringent because one does not want to operate the victim link at
zero dB signal-to-interference ratio.

Unfortunately, the smaller platform is the least likely to be able to absorb the overall system
cost of high-power, agile filtering.

Clearly, the requirement for long converter word length and a high sampling rate press the state
of DAC art. However, the payoff in overall system cost may well be worth the technology leap.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-B-4

B.1.1.2.4 Frequency Management

The following discussion addresses the issues associated with frequency and spectrum
allocation, changes in those allocations, and compliance with host nation certification and
allocation requirements. A completely flexible frequency control scheme is required for the
JTRS transceivers. The transceivers must be able to operate on any frequency within the 2MHz
to 2600MHz region while containing the spectrum within an arbitrary, but designated,
bandwidth. In addition, specific frequency channels and/or sub-bands are required to be
excisable so as to prevent interference with external radio systems.

The three question areas above imply that the frequencies of operation and of non-operation
are entered into a closed box by means of an external box or over-the-air---that is,
programmable. Likewise, the JTRS transceivers must be characterized for the emission spectra
over the entire region of potential operation. Local storage of such characterization data may be
necessary.

Potential conflict exists with the above requirements and TRANSEC algorithms. Any new
TRANSEC algorithms must take into account the necessary frequency excising. Use of legacy
TRANSEC algorithms, for compatibility with older radios, is not likely to meet the above
objectives.

In order to prevent great heartache and conflict in the future, substantial memory must be
allocated to each JTRS transceiver channel to permit a wide variety of masked channels and sub-
bands.
B.1.1.2.5 Hooks for Interference Cancellation and Agile Filters

The architecture must provide controls to external interfaces for accomplishing platform cosite
mitigation. External interference control devices will require look-ahead frequency tuning
information. Along with the next frequency state of each transmitter a strobe may be necessary
to provide the instant of frequency change. A signal such as PTT to identify the transmit or
receive state of each channel is also required. Agile filters and interference cancellers will use
this information to set up their respective devices.

Agile filters will set their center frequencies and, if necessary, set their bandwidths according
to such JTRS transceiver outputs.

In addition to the frequency tuning information, interference cancellers need three radio-
frequency ports for each transceiver channel. One port is needed for sampling the transmitted
signal. A second port is needed to inject an inverted signal into a receive signal path. The third
port is to provide error detection of the degree of cancellation achieved. The third port is
downstream in the receive path from the second port. The ports require directional couplers in
their respective transmit or receive path. Canceller providers will request the largest fraction of
coupled signal they can get. Ideally, the product of the transmit and receive coupling fractions
will not exceed the expected transmit-receive antenna isolation (typically 13 dB). Should that
goal be realized, the cancellers would not require amplifiers in the correction path. Amplifiers in
that path introduce their own interference products that counter the cancellation objective by
creating new interferers. Clearly, large coupling fractions are in conflict with the main-circuit
path-loss capability.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-B-5

B.1.1.2.6 Contention Resolution

The architecture must allow for the resolution and deconfliction of potential collisions
pertaining to the use of the radio frequency spectrum by each included channel. Simultaneous
contention for frequency spectrum by multiple transmitters and receivers must be eliminated.

The major difficulty in operating multiple radio units on a single or on nearby platforms is
contention for the simultaneous use of regions of the radio frequency spectrum. The common
approach to this problem is to employ some sort of frequency management of the various radio
assets so that none of the units are assigned the same portion of the frequency spectrum. The
common approach is reasonably effective as long as the radio assets are assigned to fixed
frequencies and there are not too many radios to manage. The advent of frequency agile, or
hopping, radios and the advent of wholesale replacement of waveforms in a single radio
seriously aggravate the frequency management potential.

The principal cause of the spectral contention is insufficient isolation between high-power
transmitters and very sensitive receivers. Tactical platforms have significant limits on the
placement of antennas that fuel the poor isolation. As an example, the +50 dBm output of a
typical tactical transmitter has to be isolated from receivers that expect minimum detectable
signals in the realm of –115 dBm. For the example, 165 dB of isolation must be obtained from
some combination of antenna isolation and frequency separation. For those readers
uncomfortable working with dB, the 165 dB is equivalent to one part in 3*10^16.

Antenna isolation on tactical platforms is in the range of 6 to 40 dB, where the 6 dB
corresponds to small antenna spacing as on a tank turret and 40 dB corresponds to the bottom
fore-position to the tip of the tail on a large airplane. Thus, frequency planning must account for
159 to 125 dB of additional isolation.

The common channel assignments are based on 99% of the total power to be contained within
the channel frequency boundaries. However, such a requirement merely constrains the upper 40
dB of a transmitted spectrum. In the –40 dBc region synthesizer phase noise takes over from the
modulation and dominates the output spectrum until the wideband noise floor of the transmit
signal is dominant. The smaller tactical vehicle would require a limit on the wideband noise of a
transmitter to be –159 dBc (a rather formidable requirement). On the larger vehicle above, the
antenna isolation would place the sensitive receiver’s signal in the phase noise region of the
interfering transmitter.

For wideband noise limited systems, no contention resolution is possible and additional output
filtering (a form of additional isolation) is required. For phase noise limited systems, a proper
frequency offset between the interfering transmit center frequency can be computed wherein the
sensitive receiver can be operated. Once a wideband noise limited system is corrected by an
output filter, the phase noise controls the offset frequency necessary for simultaneous operation
of the interfering transmitter and victim receiver.

The JTRS employed synthesizers will have to be characterized and appropriate offset
frequency separations cataloged. A system for maintaining the knowledge of current and
immediate future state of the various channels will have to be part of the architecture. State
knowledge includes transmit or receive mode and the tuned frequency. Another functional
requirement of the architecture is to operate a hold-off buffer for message packets. The purpose
of the buffer is to defer any transmissions that would interfere with on-going receive activity.
Protocol will have to adapt to the reassembly of packets in their proper order.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-B-6

There is a reasonable probability that voice packets can simply be dropped if each packet is of
short duration. Dropping voice packets will have only a slight effect on voice quality.
Coordination of such packet assembly/dropping with the cryptography and time-dispersal-coding
(interleaving) algorithms is a must.

Little opportunity for such conflict resolution exists for legacy systems. Multichannel
capability of legacy systems have been achieved by an ad-hoc collection of radios. New modes
can be added to the legacy systems as they are upgraded (e.g. ESIP SINCGARS) to allow a
gradual insertion of conflict resolution. As legacy systems are phased out the superior
multichannel performance of the JTRS will be apparent.

The above methodology for combating co-channel interference is far and away the least
expensive and most effective means. However, the legacy focus on single channel radios did not
allow this simple, yet effective, methodology.

The frequency conflict-resolution/collision-avoidance approach described above also requires
the architecture to embody central state gathering, buffer management, TRANSEC, COMSEC,
and iterleaver coordination as well as spectrally pure synthesizers. This methodology for
combating co-channel interference is far and away the least expensive and most effective means.
However, the legacy focus on single channel radios did not allow this simple, yet effective,
methodology.
B.1.1.2.7 Conclusions

All critical interfaces to support cosite interference mitigation have been identified and are
supported by our architecture. The potential for baseband contention resolution in a network-
centric radio has been identified and included in the architecture. This could result in the
removal of all external cosite mitigation equipment on an all-JTRS platform. The level of
technology maturity for minimizing cosite mitigation equipment has also been identified.
Finally, the requirements for spectral purity and internal isolation resulting from multi-channel
operation have been determined.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-1

System Control Information

C.1 System Control

C.1.1 System Control Functional Definition

C.1.1.1 Function Definitions

 (a) System Control

Management

 System Control Management is the near-real-time activity responsible for

overall system control. System Control manages the Radio Application.

It is broken into the aspects of:

 Internal Control – Command, control, and status management for all the

internal JTR entities.

 External Control – Command, control, and status management for the

connections from and of external sources. This includes local or remote

HMI and networked situations.

RF Modem Black Side
Processes

Other
Entities INFOSEC Internetworking

90545-112

Configuration
Management

Fault
Management

Performance
Management

Security
Management

Virtual
Channel

Management

System Control Management

System Control

HMI (Control)

Control/
Status

Control/
Status

Control/
Status

Control/
Status

Control/
Status

Control/Status
Local and
Remote

User control Inputs
System Status Data

Figure C-1. System Control Functional Block Diagram

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-2

 (b) Configuration

Management

 Configuration Management adds, deletes, or changes the configuration of

the JTR available to the user, network, or entities. Configuration

Management includes:

 Startup/Shutdown operations - This function starts up and shuts down

system operations.

 Establish Configuration – This function defines the system data,

resources, and attributes that are delineated for the system.

 Maintain Configuration – This function maintains the desired real-time

configuration status. This includes dynamic updates based on event or

request.

 Software Distribution – This function distributes software within the JTR

based on prescribed policy/procedures.

 Perform System Administration – This function identifies the non-real-

time configuration maintenance activities at the system, user, or network

level as appropriate for a single JTR configuration.

 Generate Reports – This function generates reports for configuration

information as requested.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-3

 (c) Fault Management Fault management is the detection, isolation, reporting, and correction of

problems in, or anomalous operation of, the JTR system. This is

constrained to the equipment attached to a single JTR entity and worked

in conjunction with Configuration. Fault Management provides:

 Start-up BIT Capability – Managed invocation and execution of Built-in

Test functions provided at entity level on start-up.

 Shutdown BIT Capability – Managed invocation and execution of Built-in

Test functions executed on shutdown.

 Real-time BIT Capability – Requested, timed or event driven Built-in

Test. Typically less thorough than Start-up BIT to reduce processing

requirements.

 Diagnostics/Correction – LRU level diagnostics designed to isolate at

lowest possible level where a fault lies so the LRU can be replaced.

 (d) Performance

Management

 Performance Management monitors and controls the quality of systems

operation. It interfaces with the entities and with other System Control

functions. Performance Management services include:

 Monitor and Analyze – This function establishes the monitoring

environment, monitors performance values, and generates reports.

 Tune and Control – This function activates control in order to refine

performance of the system. Tune and control assess performance (system

or application) and decides action to take based on policy based decision-

making.

 Smart Functions – Services providing capability without operator

intervention that supports system performance and availability such as

accounting for graceful degradation and automatic reconfiguration.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-4

 (e) Virtual Channel

Management

 Virtual Channel Management provides performance management and

configuration management for each virtual channel created through

waveform application assignment. Virtual Channel Management

includes:

 Waveform Preset Management – This function provides services required

for instantiation of a waveform application on the JTR.

 Virtual Channel Performance Management – This function provide

performance management of an executing virtual channel.

 Smart Functions.

 (f) Security

Management

 Security Management provides mediation services:

 Entity Authentication – This function invokes services which determine

that the entities are valid.

 Access Control – This function invokes services which restrict access per

prescribed policy and access rights.

 Information Source Authentication – This function invokes services to

validate data sources.

 System integrity – This function invokes services to verify system

hardware has not been modified and software is virus free.

 Audit – This function initiates services to maintain/archive logs.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-5

C.1.1.2 System Control Interface Description

 No. Interface Description

 (1) HMI Contol/Status
Object

 The System Control Interface with the HMI whether local or remote receives user requests,
processes the requests, and provides responses to the user. These requests include:
• Mode specification: local/remote, active/listening silence

• Select/Display radio-listening silence mode

• Configure radio and control unit for remote control

• Display local/ remote control status at radio and control unit

• Configuration request (Hardware or Software)

• Install/Configure HW

• Connect/Disconnect ancillary devices

• Software load initiation

• Load/Remove/Save software locally

• Display status of local load/ remove/ save

• Built-In Test Initiation

• Initiate BIT

• Display BIT results and troubleshooting information

• Display summary fault and troubleshooting information

• Waveform Specification & Parameterization

• Waveform parameter control (e.g. center frequency, data rate)

• Waveform setup/monitoring/load

• Define presets/Select presets/Display channel information associated with preset

 (2) Networking
Contol/Status
Object

 The System Control Interface with the Networking Entity sends/accepts requests, and
receives/processes responses to those requests and associated status. These requests
include:

• Establish/break virtual connection between two or more objects (people or processes) to
meet Quality of Service (QoS) requirements

• Establish/break fixed connections among users

• Configure/reconfigure the network entity protocol profile (functions and parameters)

• Allocate/reallocate HW/SW resources based on current network/radio configuration

• Update network software modules

• Set connection security level

• User access verification and authentication

• Distribute time of day information

• Run BIT and diagnostics

• Get performance data (throughput, transit time, end to end response time, number of
dropped packets)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-6

 No. Interface Description

 (3) RF Contol/Status
Object

 The System Control Interface with the RF Entity sends/accepts requests, and
receives/processes responses to those requests and associated status. These requests
include:

• Configure Analog to Digital Converter (DAC)

• Configure Digital to Analog Converter (DAC)

(a) Configure RF Power amplifier

(b) Configure Automatic gain control

(c) Configure Equalization

(d) Configure Frequency tuning

(e) Configure Bandwidth control

(f) Select Timing standard

(g) Update RF software modules

(h) Establish connections to PA and Modem

(i) Run BIT

 (4) Modem
Control/Status
Object

 The System Control Interface with the Modem Entity which encompasses the Waveform Control
sends/accepts requests, and receives/processes responses to those requests and associated
status. These requests include:
• Establish/break virtual connections between RF, Modem and Infosec

• Configure/reconfigure modem profiles (functions and paramaters)

• Update Modem software modules

• Configure/reconfigure the Modem entity protocol profile (functions and parameters)

• Allocate/reallocate HW resources based on current network/radio configuration

• Distribute time of day information

• Run BIT and diagnostics

• Get performance data (transit time, throughput, end to end response time, SNR, BER)

• Configure/reconfigure Modulation Recognition (functions and parameters)

• Set Automatic Link Establishment parameters

 (5) INFOSEC
Control/Status
Object

 The System Control Interface with the INFOSEC Entity receives performance, status, and alarm
information for the INFOSEC entity. System control requests security services from the
INFOSEC Entity which include:
• Entity authentication

• Access Control

• Formation Source Authentication

• System integrity

• Audit

 (6) Power Amplifier
Control/Status
Object

 The System Control Interface with the Power Amplifiers sends/accepts requests and
receives/processes responses to those requests and associated status. These requests
include:

• Power Amplifier selection

• Power Amplifier settings

• Power Amplifier status and alarms

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-7

 No. Interface Description

 (7) Antenna
Control/Status
Object

 The System Control Interface with the Antenna sends/accepts requests and receives/processes
responses to those requests and associated status. These requests include:

• Antenna Selection

• Antenna settings

• Antenna equipment status and alarms

 (8) Black Side

Processes
Control/Status
Object

 The System Control Interface with the Black Side Processes, consists of standard interfaces for:
• Global Positioning System (GPS) receiver

90545--113

Figure C-2. System Control Functional Interfaces with JTRS Entities

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-8

C.1.1.3 System Control Entity Object Description

 No. Object Dynamic Interface
(via Refresh)

 Interface Definition Language Specification

 (1) HMI Control/Status
Object Interface

 State Management

 (services provided through

− Refresh

− Query)

(for handheld with Control
and HMI not in the same
memory space)

 module ctrl {

 interface hmi : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };
 (for remotely connected HMI

that uses an SNMP agent to
communicate with the radio
Control)

 SNMPGet()
 SNMPSet()
 SNMPResponse()

 (2) Networking
Control/Status Object
Interface

 module ctrl {

 interface net : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };
 (3) RF Control/Status Object

Interface
 module ctrl {

 interface rf : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };
 (4) Power Amplifier

Control/Status Object
Interface

 module ctrl {

 interface pa : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-9

 No. Object Dynamic Interface
(via Refresh)

 Interface Definition Language Specification

 (5) Antenna Control/Status
Object Interface

 module ctrl {

 interface ant : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };
 (6) Modem Control/Status

Object Interface
 module ctrl {

 interface modem : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };
 (7) INFOSEC Control/Status

Object Interface
 module ctrl {

 interface sec : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };
 (8) Black Side Processes

Control/Status Object
Interface

 module ctrl {

 interface blk : Controllable {

 // To obtain the internal state

 // defined by the data it contains

 // at that point in time

 // Refresh() method

 // Query() method

 };

 };
90545-536

Figure C-3. System Control Object Interfaces

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-10

C.1.2 System Control Functional Attributes

a) System Control Management

1) Internal Control Capability Attributes

• Control of JTR configuration and status:

• In the multiple unit configurations, System Control provides Master/Slave

configuration services.

• In the redundant configuration, System Control provides Primary/Secondary services.

• Control internal entities: RF, Modem, INFOSEC, Waveform, Power Amplifiers, and

Networking. System Control interfaces with local entity control for each entity

exchanging command, control, and status information:

• May accommodate Black Side Processing.

• Common Command Language: Scalable to fit domain form factor, cost or mission

objectives:

• Includes interface and command content for exchange of status and command

amongst the JTR internal entities.

• Includes an interpreter to process the command language.

• State Management: Current Radio System State information including On, Off,

Standby, Normal Operation, Maintenance, and Alarm.

2) External Control Capability Attributes

• Control from and of command interfaces. Support multiple operations concurrently

and simultaneously.

• Common Command Language: Scalable to fit domain form factor, cost or mission

objectives:

• Includes the mechanisms to change parameters through user, network interfaces.

• Includes an interpreter to process the command language.

• State Management: Current connection information for local, remote, and networked

users.

b) Configuration Management – Configuration Management adds, deletes, or changes the

configuration of the JTR available to the user, network, or entities. These include but are not

limited to:

1) Startup/Shutdown Operations Capability Attributes

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-11

• Initialization and termination of control services and equipment:

• Initialization corresponds to boot or reboot and may be invoked manually or

automatically based on System State.

• On Termination, system virtual structures are torn down, statistics, states, and status

are collected and posted to the database, and users are notified.

• Automatic Software validation on startup.

2) Establish System Configuration Capability Attributes:

• Establish the system operational configuration data, resources, and attributes to allow JTR

operation. This capability responds at any start-up condition or by request:

• Supports configuration presets.

• Define resources, attributes, and relationships for operational execution.

• Initialize entity/equipment configuration from saved data as directed.

• Establish operational data storage for JTR use.

3) Maintain System Configuration Capability Attributes:

• Maintain operational data storage with a centralized database servicing all system

operations to accommodate varied forms of control (local, remote, networked). This

database includes services to read and write data with restriction settings. This

database contains operational information including but not limited to:

• Local Hardware and software capability and configuration.

• Virtual Channel Configurations which delineate current settings for RF, waveform,

and security settings for each operational channel.

• Preset Information.

• Identification for current users and source (local, remote, networked).

• User account information.

• Status and diagnostic results information.

• Current resource information (used and available).

• Events.

• Provides status/configuration reports to user on request.

• Provide spectral occupancy and use capability exchange information for other

networked JTRS.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-12

• Recognize system alerts and notify users.

4) Software Distribution Capability Attributes

• Software Distribution distributes software within the JTR.

• Allow loading software for new applications (e.g., waveforms) and new versions of

entity software.

• Recognize and validate requests to download new software.

• Receive versions of software and store in internal JTR storage.

• Provide mechanisms to invoke distribution of software.

• Manage distribution of software to destination.

• Notify entities and users at completion of new software loads.

• Update all configuration information.

5) System Administration Capability Attributes

• System checks to assure integrity of system settings.

• Recognize and clean-up incomplete processes.

• Backup and recovery.

• Virus checking.

• User Management:

• Add and delete users and passwords.

• Manage User Logins.

c) Fault Management: Provides a clearly defined mechanism for fault detection during start-up,

shutdown, real-time, and diagnostic. Each entity possessing physical resources is responsible

for implementing BIT test relative to the function of that entity.

1) Start-up BIT Capability Attributes

• Detect and identify faults, isolate to defined LRU level, coordinate corrective action, and

invokes virus checks.

• BIT functions are allocated to lower level resources.

• Log faults and notify HMI as appropriate.

• Wrap legacy equipment.

2) Shutdown BIT Capability Attributes

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-13

• Detect and identify faults, invoke virus checks, isolate to defined LRU level, coordinate

corrective actions.

• BIT functions allocated to lowest level resources.

• Log faults and notify as appropriate.

3) Real-time BIT Capability Attributes

• Detect and identify faults, provide graceful degradation, invoke virus checks.

• BIT functions allocated to lowest level resources.

• Log faults and notify as appropriate.

• Provide interface to Virtual Channel Management for graceful degradation.

4) Diagnostics/Correction Attributes

• Lower level diagnostics as provided, including source equipment vendors.

d) Performance Management

1) Monitor and Analyze Attributes: Provides the analysis of data received from each of the

entities. Receives parametric information. Performs threshold and trend processing

• Radio Link Performance.

• Networking Performance.

• Encryption System Performance.

2) Tune and Control Capability Attributes: Provides adaptive control parameter changes

based upon the results of the performance data. Compares data to pre-established logic and

historical trend records.

• Assessing control parameters and decision making based on policy.

• Early detection of poor performance through scalable adaptive algorithms.

• Override.

3) Smart Functions Capability Attributes: Algorithms that perform specific radio control

actions based upon complex and adaptive logic conditions.

• Graceful Degradation: Adjustments to resource assignment made via interaction with

Virtual Channel Management.

• Automatic Reconfiguration: Early detection of poor performance is identified and

scalable, adaptive algorithms provide potential configuration changes.

e) Virtual Channel Management

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-14

1) Tightly coupled with Performance Management to adapt to changing real-time conditions

maximizing quality of services.

2) On-demand configurability services to maintain channel operation.

3) Waveform Management:

• Waveform Preset management.

• Virtual Channel Preset management.

• Waveform specifications.

• Instantiation.

4) Virtual Channel Management

• Multiple channel operation.

• Black/Red Synchronization.

• Saving last good state.

5) Channel Availability and Utilization

• Allocation of channels to resources.

• Identification of available channel QoS characteristics.

6) Smart Functions

• Ability to transfer control information from one radio to another as a response to poor

performance.

(f) Security Management

• Balance between security and ease of use.

• Control and manage separate red and black processes.

• Tailored based on user level and other entries of user access.

• Sufficient archiving capability to prevent loss of events over specified archive interval.

3) Entity Authentication:

• Verify the identity of entities (persons and processes) that could cause actions to take

place.

4) Access control

• Protect JTRS resources from use by unauthorized entities - Provide discretionary access

control based on User privileges.

• Limit the damage that could be caused by unauthorized acts.

5) System Integrity

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-15

• Protect against unauthorized modification and destruction of JTRS equipment,

including hardware, firmware, and software.

6) System Availability

• Ensure an adequate level of service to end users.

• Audit.

• Hold individual persons accountable for initiating or participating in security-relevant

events and actions.

• Sufficient archiving capability to prevent loss of events over specified archive interval

(g) Software Architecture

1) Technology to support memory and processing requirements:

• Standard commercial form factor for memory and processing elements.

2) Memory

• Configuration storage sizing.

• Operational storage sizing.

• Access speed.

• Margin specification.

3) Processing Element

• Computational speed requirements (independent of waveform processing).

• Margin specification.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-16

C.1.3 System Control Considerations and Rationale

C.1.3.1 Selection Criteria

What Degree of Openness Should be Specified... Where to Draw the Line...

 The degree of openness in System Control should provide sufficient specification for

interfaces, services, and formats so that properly engineered components may be utilized across a

wide range of systems. The openness is that required to support varying domain form factors,

performance objectives, and cost considerations with minimal changes. Additionally, these

specifications must be sufficient so that the engineered components may interoperate with other

components on local and remote systems, and interact in a style that facilitates portability. Too

much detail unduly constrains an implementation limiting the openness and flexibility.

Therefore, care is taken to identify the functional attributes from which a set of testable

requirements may be written for any implementation. They are not the requirements but rather

the rules base for the implementation.

 For System Control, the optimum level of abstraction is to define the functions and

interfaces and provide the detail categories, format, and types for data, which flow amongst the

interfaces. This is where the line is drawn. Specific formats and lower level typing of data for a

comprehensive command set is best addressed by a consortium of government users and

interested industry and goes beyond our current endeavor. Keep in mind that it does not matter

how the function is implemented; what matters is that the function exists and provides desired

services. However, it does matter that Interface A sends data or commands in a fashion expected

by Interface B. In this report we identify functions and categories for data and infer types and

format mechanism.

Architecture Supports Interoperability Because...

 There are several System Control Architecture Functional Attributes that support

interoperability. These are:

• Internal Control – Internal Control supports Software interoperability through use of standard

services and well-defined interfaces.

• External Control - External control support interoperability through provision of capability to

provide legacy waveform interfaces and to receive external control via industry standard

interfaces and protocols.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-17

• Software Distribution – Software Distribution supports functionality for standard file transfer

protocol and will be based upon COTS components to allow the use of third party

distribution software.

• Smart Functions – Smart functions support interoperability through advanced features while

maintaining legacy interface mechanisms.

Architecture Definition Supports Software Programmability and Reprogrammability Because...

 There are several System Control Architecture Functional Attributes that support

Programmability and Reprogrammability. These are:

• Software Distribution – Software Distribution supports programmability and

reprogrammability by offering services, that allow the JTR software entities to receive and

distribute new versions of software and to receive and store new applications (i.e.,

waveforms) for use.

• Presets – Presets support programmability and reprogrammability by simplifying and

speeding the programming of the JTRS by the user or in remote and over the air control.

• Smart Functions – Smart functions, such as automatic reconfiguration and automatic

software validation, support programmability and reprogrammability because the JTRS may

be readied with minimal interaction.

• Parameterization of all functions - Every System Control Functional Attribute supports

programmability and reprogrammability because the functions’ interfaces are specified to

support parameterization. Without this ability all functional implementations are static.

Architecture is Compliant to the ORD Because...

 Figure C-4 shows the attributes of the Control Entity Architecture that satisfy the allocated

JORD requirements.

 Ref Section Description KPP Attributes

 JTRS
ORD

 4a.(1)(c) The JTR shall provide the operator with the ability to load and/or
reconfigure modes/capabilities (via software) while in the operational
environment (threshold)(KPP).

 X Configuration
Management,
Software
Distribution

 JTRS
ORD

 4a.(1)(f) The JTR shall have the ability to retransmit/cross-band information
between frequency bands/waveforms supported (threshold)(KPP)
Maritime/Fixed Station Domain (Objective).

 X System Control
Management,
Control Internal
Entities

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-18

 Ref Section Description KPP Attributes

 JTRS
ORD

 4a.(1)(g) The JTR shall be capable of operating on multiple full and/or half-duplex
channels at the same time (threshold)(KPP).

 X Virtual Channel
Management,
Multiple
Channel
Operation

 JTRS
ORD

 1b. System
Proposed

 Joint, combined and coalition operations require interoperable
Command, Control, Communications, Computers, and Intelligence (C4I)
capabilities via line of sight (LOS) and beyond line of sight (BLOS)
transmissions. The JTR will provide affordable, high-capacity tactical
radios to meet these interoperability needs. The JTR satisfies a core set
of requirements common to the three domains that coincide with
operational missions and environments: Airborne, Maritime, and Ground
Forces. Domain specific requirements are contained in the annexes to
this ORD to support domain-specific needs. A family of radios will be
developed for simultaneous multi-band, multi-mode, and multiple
communications that use existing and advanced data waveform
capabilities, to ensure the timely dissemination of battlespace C4I and
global navigation information. The JTR must operate with legacy
equipment and waveforms currently used by military and civilian land,
air, surface ship, subsurface, man-mobile, and vehicular platforms, and i

 All

 JTRS
ORD

 4a.(1)(h) The JTR shall have the capability of automatic protocol conversion and
message format translation of voice, video, or data between frequency
bands or waveforms as specified in paragraph 7, Table 1 (threshold).

 System Control
Management,
Control Internal
Entities

 JTRS
ORD

 4a.(1)(i) Without interfering or overriding terminal operations, the JTR shall be
capable of distributing and accepting software upgrades that have
integrity and can be authenticated when transmitted through the network
with which it interfaces (threshold).

 Configuration
Management,
Software
Distribution

 Security
Management
(all attributes)

 JTRS
ORD

 4a.(1)(k) The JTR shall provide the ability to scan a minimum of 10 operator
designated fixed frequencies or presets (threshold), and individual
frequency bands (objective).

 System Control
Management,
Control Internal
Entities

 JTRS
ORD

 4a.(1)(n) After an unexpected power loss, and upon restoral of power, the JTR
shall be capable of completing a components diagnostics test and a
systems recovery to include: hardware, software, presets and settings
(threshold).

 Fault
Management,
Start-up BIT

 JTRS
ORD

 4a.(3)(g) The networked JTR shall selectively transmit individual location
information to selected JTR nodes and be passed in the Military Grid
Reference System and/or in the latitude and longitude to a host system
(threshold).

 System Control
Management,
Control Internal
Entities

 JTRS
ORD

 4b.(4) The JTR internal test and diagnostic built-in-test (BIT) provisions shall
be capable of fault isolation (threshold).

 Fault
Management;
Start-up BIT,
Shutdown BIT,
Diagnostics

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-19

 Ref Section Description KPP Attributes

 JTRS
ORD

 4c.(1) The JTR shall provide an operator-selectable capability to operate in
listening silence (receive only) mode (threshold).

 System Control
Management,
Control Internal
Entities

 JTRS
ORD

 5d.(1) The JTR management and components shall provide checks for
computer operations system viruses during systems initialization and
routine operations. The operator shall be alerted to a detected virus.

 Fault
Management;
Start-up BIT,
Real Time BIT

 JTRS
ORD
Annex B

 4.(1)(a) In addition to GPS, the Maritime and Fixed JTR shall provide a
scaleable number of channels: a minimum of 4 (threshold), with a
growth capability to 10 (objective)

 Virtual Channel
Management,
Multiple
Channel
Operation

 JTRS
ORD
Annex B

 4.(1)(d) The Maritime and Fixed station configuration of JTR shall provide the
capability for radios to be operated, controlled, and monitored from
remote locations (thresholds).

 System Control
Management,
External Control
Capability

 JTRS
ORD
Annex B

 4.(1)(h) The JTR shall have a minimum of 10 presets per channel (threshold)
and a minimum of 20 presets per channel (objective).

 Configuration
Management,
Establish
System
Configuration

 JTRS
ORD
Annex B

 4.(1)(j) The Maritime/Fixed Station JTR shall provide the capability to choose
from among at least 12 waveforms without loading additional software
from an external source, and replace waveforms over-the-air or using a
bulk storage device containing up to 30 waveforms. (threshold).

 System Control
Management,
Control Internal
Entities

 90545--182

Figure C-4 . Compliance of System Control to Allocated JORD Requirements

Architecture is Extendable to New Hardware and Software Components Because...

 All System Control Functional Attributes support extendibility of hardware and software

because they are specified at a level that is implementation independent.

 System Control also supports other attributes such as:

• Independence of hardware and software through use of object environment, wrappers for

legacy, and tiered functionality

• Scalability of architecture through specification of tiered functionality. The right amount

of functionality is available for specification to an implementation.

• Affordability through scalability.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-20

• Identification of critical interfaces through well-defined interface definition through IDL

and logical partitioning of functions.

• Modularity through use of good development practices and decomposition. Well-defined

functionality of our architecture definition fundamentally facilitates further elaboration

to modular objects and partitioning.

• Evolvability through use of object techniques which allow evolution through simple

method/operation additions.

• Technology insertion through incorporation of new objects. Object technology supports

replacement as well as modification of services.

The architecture for System Control is defined by the Functions, Interfaces, and Attributes

discussed in Section C.1.1 and C.1.2. The core functions of System Control are

• System Control Management.

• Configuration Management.

• Fault Management.

• Performance Management.

• Virtual Channel Management.

• Security Management.

 JTRS is a networked telecommunications system and so we capitalize on services contained

within these types of systems. Our System Control core functions are common to

telecommunications systems such as cellular. We decompose the layers underneath each core

function to identify subcore functions, features, and services. The subcore functions are the

engineering characteristics on our trade/relationship table depicted in Figure C-5. Aspects of the

subcore functions, features, and services are our functional attributes. Our System Control

Engineering Characteristics are a decomposition of traditional services provided by control,

allocation of JORD requirements, the PMCS reference model, and an understanding of

commercial telecommunication systems services (e.g., cellular) and reference models for system

and network control

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-21

 We identified the relationships between the JTRS Attributes and the Engineering

Characteristics as strong positive, positive, negative, or strong negative. After looking across the

relationships and considering the user perspective of dealing with a fielded product, we

summarized that Performance, Flexibility and Open System/Open Standards are most important

to achieve the robust and implementation independent architecture for system control. These

attributes are our enablers and capture many attributes in a succinct fashion. Specifically, fielded

performance is perceived as reliability, maintainability, Quality of Service, Functionality,

Affordable Cost, and Lifecycle. Traditionally, we have looked to point solutions to get

performance and performance was largely an operation performance measure with less

Function/Feature**
SC
M

SC
M FM

F
M

F
M

P
M

P
M

P
M

C
M

C
M

C
M

C
M

C
M

C
M

S
M

S
M

V
C
M

V
C
M

VC
M

V
C
M

S
A

S
A

S
A

S
A

BI
T

Ca
pa

bi
lit

ie
s

av
ai

la
bi

lit
y

an
d

Ut
ili

za
tio

n

Aspect F
S
W

S
W

Programmability "+" "+" > > > > > > "+" "+" "+" "+" "+" "+" < < > "+" > > "+" "+" <
Software Modularity > < < < < > > > > > > > "+" "+" "+" "+"
Hardware Modularity > < < < > "+" < "+" "+" "+"
Reconfigurability "-" "-" "+" "-" "-" "+" < "-" < > > > "+" "+"
Interoperability (Network) "+" > > > "+" "+" "+"
Interoperability (Air Interface) "+" > "+" "+" "+"
Interoperability (Software) "+" < "+" > "+" "+" "+" "+" "+"
Reserve Capacity > > > "-" < "-" < "-" > > "+" "+" "+" "+"
Capacity (Channels) "+" > < > "+" > > > >
Spectral coverage and use "+" > "+" "+" > >
Cosite "+"
Cost As Independent Variable (CAIV) < < < < > >
Technology Independence "-" < < < < < "+"
Software/Hardware Independence < < < < < > "+" > > "+" "+"
Industry Standard > "+" < < < > > > > > "+" "+"
Extendible (extendibility) > < < < > "+" > > > > "+" "+"
Scaleable (scalability) > < < < > "+" > "+" > > > "+" "+" "+" "+"
Technology Insertion "+" > > > > > "+" > > > "+" "+" "+" "+"
CRYPTO > "+" "+" > > >
Form Factor > > > "+" "+"
Quality of Service "+" "+" "+" "+" "+" "+" "+" > > "+" "+" "+"
Risk > > > "-" >
Lifecycle "+" "+" > > > > > > >
Flexibility "+" "+" > "+" > < "+" "+" "+" "+"
Functionality > > "+" < > > > > "+" "+"
Reliability "+" "+" "+" > "+" > > > > > > < < "+" "+"
Maintainability > > "+" "+" "+" > "+" "+" "+" "+" "+"
Power > >

Portability "+"
Open System > "+" > > > > > > > > > > "+" > > > > > > > "+" "+"
Open standards > "+" > "+" >

** Function/Feature Abbreviations - See
next worksheet + = Stron Positive Relationship
SCM = System Control Management > = Positive Relationship
FM = Fault Management < = Negative Relationship
PM = Performance Management - = Strong negative Relationship
VCM = Virtual Channel Management
CM = Configuration Management
SM = Security Management
SA = Software Architecture

Flexibility Attributes

Performance Attributes

Open Systems/Standards

Engineering
Characteristics

Attributes

Figure C-5. System Control Trade Relationship Matrix

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-22

consideration for Operations, Administration, and Maintenance (OA&M). Today, OA&M is a

costly necessity and is included in fielded performance through accommodating overall

flexibility.

 We perceive fielded flexibility as programmability, reconfigurability, interoperability (air

interface and network), extendibility, scalability, technology insertion, and portability. Fielded

flexibility is achieved through HW/SW modularity, SW Interoperability, Hardware/Software

Independence, reserve planning, technology considerations and packaging strategy. Open

Systems approaches and use of Open Standards encourage such strategic planning and good

development practices. Also critical to flexibility is use of open standards and practices

encourages through open systems methodology. In summary, through open standards and

strategies in the architecture definition, we define a flexible architecture that adapts to

performance issues as depicted in Figure C-6.

 The challenge in system control is to specify an architecture which has the right amount of

functionality for the form factor, cost, and mission objectives. Our System Control Functional

Attributes are a lower level decomposition of the characteristics in the trade table. These

attributes are

• Implementation Neutral.

90545-352

Figure C-6. Relationship of Summsarized Desired Attributes

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-23

• Clear to be tiered into levels supporting varying level of functionality.

• Allows a migration toward embedment of advanced software techniques such as real-

time expert systems.

• Is largely software today and will always lend itself to software or programmable

hardware thus extending the lifecycle.

 The next sections by core functions elaborate on our considerations and rationale for the

level of detail specified for each of the functional attributes by Core Function.

C.1.3.2 System Control Management Considerations, Rationale, and Trades

 The System Control Entity provides overall control of the JTRS through System Control

Management. This includes control of the system state (e.g., initialization, operational,

shutdown, maintenance), control of all other Functional Entities, control of BIT, and control of

access to system functions. The System Control Management Considerations, Rationale, and

Trades are discussed in the following paragraphs

System Control Management Considerations

 Table 354 summarizes System Control Management Considerations by Functional

Attribute.

 Functional Attribute Implementation Consideration Remarks

 Configuration Control JTR may be a single unit

 AJTR may be a may up of multiple JTRs with a
single external identifier (e.g., daisy chained)

 AJTR may include redundant equipment to
maximize system availability.

 Variation by domain and use

 Commercial cellular systems accommodate a
master/slave configuration where one
instantiation of system control is deemed the
master and has knowledge of all other
attached equipment.

 Similarly, if redundant equipment is used to
maximize system availability, System Control
functionality establishes a configuration where
one set of equipment is primary, the other
secondary.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-24

 Functional Attribute Implementation Consideration Remarks

Control Entities − External requests are asynchronous. Internal
need to be managed and more synchronous

− Interfaces with all entities, internal and external

− Interfaces with Black entities as appropriate
• System Control initiates and keeps detailed

track of all internal entities therefore it mediates
external entity requests to maintain operational
stability.

• Control connections from and of external
sources. This includes local or remote HMI
and networked situations. (remote vs local vs
networked)

• Legacy interfaces

− System Control provides a clear separation
of internal and external control

− Red and Black versions of Systems Control
may exist and communicate through
security mechanisms

− Internal control tends to be static in nature.
Knows what is attached to it to control,
what each entity can do, and what is going
on. Utilizes policy and rule definitions

− External Control tends to be dynamic in
nature. There are multiple users creating
an N-dimensional management issue.

State Management − Track system state (e.g., on, off, standby, etc.)
of configuration and internal entities based on
control, commands, and events.

− Record entity status for access to be used for
other system control functions and entities.

− Traditional state table

− Manage reconfiguration as required when
notified through fault management.

Command/Control
Language

• A common communication language/structure
is imperative to allow multiple implementations
interoperability

• Separation of command content vs use of
network protocol for message exchange, e.g.
SNMP

• Internal language may be different but not
encouraged because this limits SW
interoperability

• Amount of interpreter functionality between
HMI, Networking, and System Control.

• Entities request information, send status and
alarms

• External entities send command which are
processed by System Control and then
forwarded to entity.

• Communicates parameter/configuration
changes to appropriate entity

• Consistent across domains to support
multi-vendor development

• Detailing a command language content
needs extended work by government and
interested industry. For interoperability,
this should be detailed similar to an Air
Interface Specification for Cellular
communications or a standard protocol
language.

• Isolating this function as an object allows
use/upgrade to standard command
interface language protocols such as
SNMP

• Receives commands from HMI and parses
command for communication to system
control subfunction.

 90545--XXX

Figure C-7. System Control Management Considerations

System Control Management Rationale

Functional Attribute Set

 System Control Management provides overall control for the JTRS. Given the system

control management functional attribute considerations above, there is enough distinction

between internal and external control implementation considerations that they are specified

separately in our Functional Attributes, Section C.1.2. The single most important reason why is

to allow one entity to manage the resources of the JTRS configuration. If an orderly approach is

not taken, the unit operation is non-deterministic.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-25

 Figure C-8 is a simplified view of the operational JTRS. System Control based on inputs,

sets up the JTRS configuration and applications and then gets out of the path of operation.

Control from and of external command interfaces (HMI (whether local or remote) or

networking) operate concurrently and simultaneously but are asynchronous in nature. We do not

want them to interfere with operation, therefore, System Control Management mediates the

requests. System Control normalizes the asynchronous nature of the requests through

operational rules and policies implemented by System Control and then communicated with

entities. For example, software downloading is a managed service and system control may

accept and store the new load to hard disc storage and complete the actual load during low

system use as identified through mission planning scenarios. Granted override conditions are

taken into account.

 The JTRS requires control interfaces to external equipment treated as an internal entity. For

instance, antennas connected to a particular JTRS are managed by the Antenna entity. Specific

devices are determined by the systems in which the JTRS are installed. There will be amplifiers,

90545-238b

HMI
Control

Local Control

RFI/O

N
etw

orking M
od

em

Bl
ac

k
Si

de
 P

ro
ce

ss
IN

FO
SEC

User

HMI
Control

Local Control

RF I/ON
et

w
or

kin
gM

odem

Black Side Process

IN
FO

SE
C

Remote User
Control via
Network

HMI
Control

Local Control

RF I/ON
et

w
or

kin
gM

odem

Black Side Process

IN
FO

SE
C

Air InterfaceNetwork Interface

Network
Manager

Remote User
Control via
Air Interface

Figure C-8. JTRS Simplified Operational Example

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-26

antennas tuners, filters, RF switching and other such devices. All of the control will be provided

by System Control within the JTRS.

 Another aspect of control is the issue of external (remote user and command) interfaces.

Figure C-8 illustrates the issues at hand for multiple users including a network manager.

Implementation delineates any restrictions to the paths. The external control activities

communicate via RF or network (Local Area Network (LAN) or other. These controls are

necessary to provide external agents with the ability to use JTRS resources from a remote

location. An example is to use an airborne JTRS as a relay for ground tactical communications

to an afloat commander well beyond the line of sight. The control may also be exercised from a

local tactical situation manager in the Combat Information Center of a carrier to generate a very

specific communications channel to support a secure channel for a limited number of users. This

control may be exercised via the shipboard LAN from a tactical control console.

 The key to providing an interoperable control capability is to establish a Common

Command Language that applies to both external and internal command/control/status. This

language must provide a comprehensive and well-defined set of messages that are scalable to

accommodate mission, form factor, and cost. System Control provides an interpreter to process

the command language and provides the command language mechanisms to set or change JTRS

operating parameters through by the local user or by a remote user via the RF network interfaces.

 The current framework and common control language support most legacy waveforms.

However, the common control language development requires identification of all physical and

functional interfaces expected for systems employing the JTRS. Part of the remaining

development is to identify all legacy systems that should be included in the planning. Inclusion

of certain systems may not be cost effective or may introduce design requirements not required

for any other system or in future applications. An example of this in Link 11 with a number of

unique features that may require unusual architectural design features. DoD planning is to

replace this Line 22 that will be much easier to implement in a JTRS configured system. There

are other similar instances to be closely investigated in a trade study prior to language design.

The design of the Common Control Language must recognize that many of the heritage systems

do not possess interfaces that would provide required or desired data and control features. These

too, should be considered in designing the language.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-27

 The JTRS must have knowledge of all attached elements (both internal and external) in

order to manage the distribution of messages and data. State Management maintains current

status and connection information on all of these elements. System Control is assumed to be a

Red Side function but may accommodate Black Side Processes through security interfaces.

Figure C-9 details the functional attribute sets for the System Control Management

Attribute. Described for each attribute are its interfaces to the other entities, the type of interface

data, internal System Control Interfaces, the tiered functionality provided and trades and

examples. The trades identified are presented later in this section. The examples represent

examples of the attribute if implemented with today’s technology.

 Functional
Attribute Interface Interface Data

 Internal
Interfaces Tiered Functionality Trades and Examples

 Internal Control
and State
management

 Antenna, RE,
PA, Modem,
INFOSEC

 Event
information for
state change

 All Basic for single unit

 Intermediate: Multiple
or Redundant

 Advanced: Multiple and
redundant

 External Control
and State
Management.

 All All controllable
parameters

 All S/W Modules Separation of functions
between HMI, control, and
networking: Trade Study #1

 Embedded Training

 Internal
Command
Interpreter

 Antenna, RF,
PA, Modem,
INFOSEC

 Parameters
specific to
each entity

 Command
Interpreter

 Feasibility of incorporating
this function into the
Command Interpreter?

 External
Command
Interpreter

 HMI Command
inputs,
response
outputs

 All Basic implementation
incorporates required
commands,

 Advance
implementation uses
standard more
universal command
package

 Separation of functions
between HMI and control

 Command interpretation

 Standardized command
language

 State
management

 All All controllable
parameters

 Fault
Management

 Changing
parameters

 All All controllable
parameters

 Fault
Management

 Result of Command
Processing

90545-355

Figure C-9. System Control Management Summary Detail

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-28

Trade Studies

Trade Study 1: Separation of functions between HMI, System Control and Networking

 Figure C-10 provides a trade of HMI, System Control, and Networking functionality.

Alternatives to be considered are:

1. Command Interpretation/state management occurs in HMI.

2. Command Interpretation/state management occurs in System Control.

3. Command Interpretation/state management occurs in System Control.

 Alternative Pros Cons

 Command
Interpretation/ state
management occurs
in HMI

 Minimum interface to respond to user inputs

 Provides single object for implementation of
functionality

 System must support multiple user s
concurrently. If control of state resides in HMI
other user may be delayed services

 Functionality must have awareness of state of
real-time resources while processing inputs at
human speed

 Makes it extremely difficult to incorporate COTS
or legacy components

 Command
Interpretation/ state
management occurs
in System Control

 Central control easily supports multiple users

 State management functions separated from
processes responding to human speed inputs

 More easily supports modifications to either HMI
or technology updates without affect other entities

 Specific interface required to separate
functionality

 Command
Interpretation/ state
management occurs
in System Control

 Processes remote an local inputs with fewer
interfaces.

 InterNetworking entity is substantially more
complex

 Mixes functionality, i.e. Internetworking becomes
requires more detailed interfaces for state
management

90545-353

Figure C-10. Trade 1 -- Separation of Functions between HMI, System Control and Networking

Trade 1 Conclusion:

 The trade analysis shows that separating the functionality of state management and

command interpretation from HMI and Networking is the most logical partitioning of functions.

Although this does result in the need for specific interfaces between these functions, these

interfaces can be well defined and separate the functional processes for highly desirable

independence. This does not preclude HMI or Networking to keep copies of data to facilitate

response times, however, this is an implementation decision.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-29

Additional Trades / Investigations:

• Language Definition to include review of Domain considerations and legacy equipment interfaces.

C.1.3.3 Configuration Management Considerations, Rationale, and Trades

 Configuration Management provides services for initializing, maintaining, and terminating

JTR operation. Additionally, Configuration Management provides management of data storage

and system administration. The following paragraphs discuss the Considerations, Rationale, and

Trades for Configuration Management.

Configuration Management Considerations

 Figure C-11 summarizes Configuration Management Considerations by Functional

Attribute.

 Functional Attribute Implementation Consideration Remarks

 Startup/Shutdown Operations:

 File systems

 State management

 Entity Interfaces including HMI

 MIB/data structures

 Virtual Channel

 Interface Control

 Initialization and termination of control
services and equipment

 Time of Startup/Shutdown

 Use of BIT

 Degree of isolation and fault detection on
startup/shutdown

 How much state/settings to store in Non-
volatile memory in case of power loss.

 Time duration of startup/shutdown
domain and mission specific
parameters

 BIT and degree of isolation covered
under Fault Management.

 Tiered versions of functions to
accommodate situations

 Startup Operation:

 Automatic Software Validation

 Requires identification in entity of current
software version

 Requires identification of SW to HW

 Typically completed by including
identifying information within initial
parameters; version information via
time-tag or other conventions.

 Establish System Configuration:

 Support System Presets

 Save information for applications
and equipment configurations

 Define resources, attributes, and
relationships

 Identify entity allocations as
appropriate

 Write data to MIB

 Storage location for presets: Red or Black
Side

 Default presets for unused resources

 Privileges for changing presets

 Specify preset attributes by mission or
domain policy

 Changing permissions part of user
administration

 Maintain System Configuration

 Maintain MIB data

 Status reports to interface

 Centralized vs distributed configuration
information

 Content of MIB/Data base

 Size operational requirements vs storage

 Compression techniques for storing data

 Use of networking protocol supporting
database such as SNMP with a
Management Information Base (MIB)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-30

 Functional Attribute Implementation Consideration Remarks

 Software distribution:

 Loading either new applications or
system software

 Distribute new software

 Over the air reconfiguration

 Generate reports

 Loading either new applications or system
software

 File Formats in a heterogeneous system

 Compiler vendors typically have a
program that creates the ROM image,
e.g., S-record format. Content of the
data may be a vendor specific.

 System Administration (non-real-
time adjustments):

 Checks to assure integrity of
system settings

 Virus Check uploads

 Cleanup incomplete processes

 Backup and recovery

 User management

 Schemes for determining best time for system
administration

 User control of system admin

 Many models exist to support lower level
decomposition of functions in this area

 In using standard processors,
commercial virus checking software is
available.

90545-356

Figure C-11. Configuration Management Considerations

Configuration Management Rationale

Functional Attribute Set

 Configuration Management functional attributes provide configuration services for all facets

of operations. These functional attributes are common to many applications. They include

Startup/Shutdown operations, establish configurations for both equipment and applications,

maintain operational and non-operational base of information, software distribution and system

administration. There are many considerations which we feel are dependent on the domain,

mission or both. For instance, a cold vs warm boot may be allowed or required. If BIT is part of

Start-up the operator may not be able to wait for a thorough BIT to complete. So a tiered

approach to startup may be required for a specific JTRS.

 Configuration Management is responsible for data storage, operational and non-operational.

There are many existing examples that devices such as a JTR support storage of configuration

information through use of a centralized database that is accessible to all necessary entities.

Configuration Management manages this area, access to which is mediated by System Control.

The issue at hand is what is the possible content and structure of the content to support the

varying domains and missions of a JTRS. Given concurrency and multiple operation, a network

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-31

management scheme supporting database storage and transactions is necessary. Such protocols

include the Simple Network Management Protocol (SNMP). SNMP is well-established and if

implemented today is the protocol of choice. Accompanying SNMP is a Management

Information Base (MIB). Figure C-12 illustrates a sample MIB structure with associated

databases and associated database management functions.

 Today’s communication platforms for the Maritime/Fixed and Airborne utilized Legacy

“stove pipe” Radios. Even with this antiquated technology often times a concurrent multiple

operator environment is supported. The AWACS system provides mechanical switches for the

operator to select a particular radio for use. Radio management is typically orchestrated by a

communication commander or between the operators. It is therefore necessary to have a derived

requirement that states “the JTRS shall support multiple concurrent operators “

 Supporting multiple concurrent operators and varied missions of a JTRS drives the concepts

for channel and configuration presets. Rather then having a super operator or commander

manage the JTRS assets this task is handled by software. Similar to a resource manager in a

commercial organic operating system, System Control through Configuration Management and

Virtual Channel Management provides a fail-safe way of allocating and managing physical

90545-188b

Management Information Base (MIB)
System Control

The management of information used to control and configu re the JTRS

Management Information Base (MIB)
System Control

The management of information used to control and configu re the JTRS

Use Database Manager
Manages User

Access Rights and Passwords

BIT Fault Log Manager
Record Faults Detected by BIT

Use Database
Operators

Access Rights, Passwords and Group

Use Database
Operators

Access Rights, Passwords and Group

BIT Fault Log
Time Tag Error Codes
Channel/System State

BIT Fault Log
Time Tag Error Codes
Channel/System State

Virtual Channel Manager
Allocate Physical Assets to

Virtual Channel Requirem ents

Waveform Database manager
Manage Code Segments for

Various Wave Forms

Virtual System Database
A Collection of Capabil ities for Each

Channel Grouped b y User or Mission

Virtual System Database
A Collection of Capabil ities for Each

Channel Grouped b y User or Mission

Waveform Database
Version/Creation Time Tag

Compressed Code Segment

Waveform Database
Version/Creation Time Tag

Compressed Code Segment

Physical System Database
Inventory/Availabi lity of Physical Assets

Modems, PA, Antenna, IO Ports, etc.

Physical System Database
Inventory/Availabi lity of Physical Assets

Modems, PA, Antenna, IO Ports, etc.

Figure C-12. Example MIB Components/Operations

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-32

resources. This allows the operator to focus on the task of communicating information rather

then managing the communication resources.

 On start-up, the Virtual Channel Manager allocates physical resources to meet the requests

of an operator through presets. Preset files include information as to what type of waveform,

frequency spectrum, power output, data rates, modulation types, encryption type, and

encoding/decoding type. These settings are saved in the Virtual System Database. It may be

tagged with the operator and possibly the mission in which it is to be associated with.

 When activated, the Virtual Channel Manager accesses the Physical System Database to

find a collection of components to meet the setting. The Physical System Database contains a

collection of all the hardware components in the JTRS such as Modem, PA, Antenna, and I/O

ports. The physical components are parameters associated with them that constrain their

performance and function. This may include such attributes as how many channels are available

and the specific characteristics of each channel. There may be modems from different vendors

that have different performance or operational characteristics. For example, a modem may have

only have a receiver to support a low cost guard channel function. The receiver may operate

only at one frequency and support only one modulation type. A modem may be hardwired to a

particular antenna that would restrict the frequency band. These limitations would need to be

parameterized and contained within the Physical System Database.

 It is conceivable that a mission communications commander may be interested in

reconfiguring a JTRS due to the mission needs. As the mission transitions from one stage to the

next, the channel profile may change to accommodate different requirements. Various mission

stage configurations could be defined that contain channel configurations for the JTRS. The

mission stage configuration may contain a collection of virtual channel presets to be assigned

when a mission stage is activated.

 Built-in-test (BIT) needs to have a fault log that contains a time stamp and a fault code

representing the failure detected and the lowest repairable unit (LRU) that failed. The time

stamp provides insight as to when the error was detected and logged. The BIT failure record

includes the test that detected the failure and the statistics (m and n), as well as the physical

channel configuration when the failure occurred. This includes such things as waveform,

modulation type and parameters, transmit/ receive state, power level, Access controls designate

which operators can view the log, and which ones can erase the log.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-33

 A software waveform database of executable images is required. Image compression is

advised to avoid consuming excessive memory. This is viewed as an implementation decision.

The storage memory needs to be non-volatile so that the waveforms don’t need to be

downloaded after power-up. A time stamp and version information, code size, and comment

parameter may be used for validation of the image.

 The User Database contains a record for each User. The record contains such fields as the

User Identifier, Access Rights, and Associated groups. The Access Rights may be a list of

waveform they can run, a list of operations they can perform, and a classification level. The

Associated groups field would group one or more operators into a group operator. This group

operator contains it’s own Access Rights and Group Identifier. The User Database Manager

provides methods to create, modify, and delete Users.

 The data contained in the MIB is very important and should maintained even though

intermittent power loss. That suggests that “the JTRS needs to keep the MIB in non-volatile

memory.” An example of the MIB content is contained in Figure C-13.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-34

MSRC-5000SRD
Appendix C

C-C-35

As assigned by IANA: Wireles Information Transfer Systems - wits = .1.3.6.1.4.1.3880 * denotes Table Index
WITS (3880) uniqueId (1) * vc (1) *

Reserved (1) deviceType (2) rxFreq (2)
gen (2) added new #'s vendorName (3) vc (1) * txFreq (3)

vendorName (1) TBD Baselined assocChannel (4) rxFreq (2) txPwrLevel (4)
contactInfo (2) txFreq (3) txStatus (5)
productDescr (3) externalPaTable txPwrLevel (4) upLinkStatus (6)
legal (4) wits6004-dmr (1) txStatus (5) duplex (7)

license (1) Reserved - wits5004-acn (2) upLinkStatus (6) freqChannelDef (8)
products (3) patentNumber (2) Reserved - wits3002-flyaway (3) duplex (7) baseAddr (9)

usageRights (3) Reserved - wits6004-dmrPlus (4) lruTable (1) (use PCI discovery info to fill table)………….. freqChannelDef (8) controller (10)
wits6004-dmr (1) supportInterface (2) lruName (1)* orderwireTransec (11)

 thermalSensorTable (3) hardDrive (1) serial (2)* Reserved (9-15) orderwireWim (12)
hwConfig (1) clock (4) lruName (1) * floppyDrive (2) swVer (3) freqIncremental (16) downLinkStatus (13)

battery (4) value (2) hwVer (4) maxTxPwrLevel (17) rangingMode (14)
batteryType (1) location (3) date (5) minTxFreq (18) rangeVal ue (15)

virtCircuits (2) mode (2) upperThreshold (4) location (6) maxTxFreq (19) freqIncremental (16) added
 rf (1) status (3) upperWarning (5) connectionType (7) swVer (1) minRxFreq (20) maxTxPwrLevel (17)

 rfExternal (1) timeRemaining (4) lowerThreshold (6) pwrRqmt (8) minFreq (2) maxRxFreq (21) minTxFreq (18)
 paTypeXTable (1) lowerWarning (7) maxFreq (3) Reserved (22-29) maxTxFreq (19)
 paTypeYTable (2) vc (1) * currentTime (1) lastTriggered (8) mil181Table (4) swVer (1) minRxFreq (20)
 rfInternalTable (2) vc (1) * vswr (2) utcTime (2) operatingMode (30) minFreq (2) maxRxFreq (21)

txInhibitTable (3) vc (1) * vswr (2) txPwr (3) date (3) wfMIL181 (1) (fsk/psk) new #'s fskPreamble (31) maxFreq (3) Reserved (22-29)
vc (1) * state (2) txPwr (3) pwrOutput (4) rolloverDelay (4) mil182Table (4)
state (2) txInhibit (3) pwrOutput (4) reflPwr (5) daylightSavStart (5) wfMIL182 (2) (5KHz) fowLength (30) new #'s

 txPwr (4) reflPwr (5) maxFreq (6) daylightSavEnd (6) fowCrs (31)
 pwrOutput (5) maxFreq (6) minFreq (7) daylightSavStatus (7) wfMIL183 (3) (25KHz) fowPccAddr (32)
 reflPwr (6) minFreq (7) bit (8) TBD vc (1) * activeWaveform (10) swVer (1) fowSysMsg (33) vc (1) *
 maxFreq (7) bit (8) duplex (9) rxFreq (2) waveformState (11) minFreq (2) nextFowLength (34) rxFreq (2)
 minFreq (8) duplex (9) txFreq (3) interleaver (12) maxFreq (3) fowFrameNum (35) txFreq (3)
 bit (9) hf (1) squelchLevel (4) concatCoding (13) mil183Table (4) txPwrLevel (4)
 duplex (10) cueFreq (5) selectedPA (14) txStatus (5)
 waveform (2) up to here: .1.3.6.1.4.1.3880.3.1.1.2.2 vhf (2) operatingMode (6) pwrOutput (15) satIndex (1) * upLinkStatus (6)
 wfSINCGARS (1) hopset (7) vswr (16) sat182CalledParty (2) duplex (7)
 userRedIO(3) swVer (1) defDataRate (8) satcomPortA (20) sat183CalledParty (3) freqChannelDef (8)
 audio (1) mil (1) minFreq (2) dataClkSrc (9) satcomPortB (21) assignment (4) baseAddr (9)
 dataPortsTable (2) vc (1) * maxFreq (3) dataMode (10) satcomPortC (22) dataRate (5) controller (10)
 dpIndex (1) * vocoder (2) uhf (3) sincgarsTable (4) analogMode (11) satcomPortD (23) clockRecovery (6) orderwireTransec (11)
 dataRate (2) volume (3) satcomPortE (24) commStatus (7) orderwireWim (12)
 wimId (3) satcom (1) satcomPortF (25) commType downLinkStatus (13)
 los (2) satcomPortG (26) connectionStatus (8) rangingMode (14)
 security (4) new #'s satcomPortH (27) mode (9) rangeVal ue (15)
 alarm (1) diffEncoding (3) satcomPortI (28) portNumber (10) addedfreqIncremental (16)
 bypass (2) wfHQ (1) protocol (11) maxTxPwrLevel (17)
 activeFuncTable (5) version (3) swVer (1) security (12) minTxFreq (18)
 vc (1) * cik (4) wfLink4A (2) minFreq (2) slotNumber (13) maxTxFreq (19)
 shortTitle (2) * split (5) wfLink11 (3) swVer (1) maxFreq (3) minRxFreq (20)
 wimId (3) * selfTest (6) hf (1) swVer (1) minFreq (2) maxRxFreq (21)
 algFunction (4) userKeys (7) minFreq (2) maxFreq (3) hqTable (4) Reserved (22-29)
 edition (5) * secDeviceStatus (8) civ (2) maxFreq (3) link4ATable (4) vc (1) *
 segment (6) keySelection (9) vhf (2) link11Table (4) vc (1) * rxFreq (2) new #'s operatingMode (30)
 keyDescr (10) vc (1) * rxFreq (2) txFreq (3) frameFormat (31)
 secureStatus (11) rxFreq (2) txFreq (3) squelchLevel (4) infoReport (32)
 cikStatus (12) uhf (3) txFreq (3) squelchLevel (4) modIndex (5)
 tamper (13) squelchLevel (4) freqDev (5) netNumber (6)
 vc (1) * freqDev (5) dtsEnable (6) wodSegment (7)
 keys (3) wimId (2) * cellular (4) netMode (6) dateTag (8)
 keySetTable (1) keyTagOID (3) ktIndex (1) * amps (1) stationAddr (7) activeMode (9)
 keyTagTable (2) classification (2) addrList (8) todCommand (10)
 supersede shortTitle (3) cdma (2) addrTimeout (9) todState (11)

viewStatus edtion (4) startReset (10) fmt1 (12)
 loaded TBD registers (5) tdma (3) syncMode (11) fmt2 (13)
 zeroize segments (6) timingMOde (12) fmt3 (14)
 keyFill use (7) gsm (4) dopplerCorrection (13) fmt4 (15)
 text (8) universal (3) waveformMode (14) fmt5 (16)
 obsolete (9) am (1) fmt6 (17)
 fmt7 (18)
 fm (2) swVer (1) fmt8 (19)
 users (4) userId (1) * swVer (1) minFreq (2) fmt9 (20)
 userAcctTable (1) level (2) * fsk (3) minFreq (2) maxFreq (3) fmt10 (21)
 usersOnlineTable (2) passwd (3) maxFreq (3) amTable (4) fmt11 (22)
 userId (1) * online (4) psk (3) swVer (1) fmTable (4) vc (1) * fmt12 (23)
 ipAddress (2) lastLogin (5) swVer (1) minFreq (2) vc (1) * rxFreq (2) fmt13 (24)
 acctStatus (6) minFreq (2) maxFreq (3) rxFreq (2) txFreq (3) fmt14 (25)
 loginAttempts (7) maxFreq (3) fskTable (4) txFreq (3) squelchLevel (4) fmt15 (26)
 passwdStatus (8) pskTable (4) vc (1) * squelchLevel (4) modIndex (5) fmt16 (27)
 vc (1) * rxFreq (2) freqDev (5) wod1 (28)
 rxFreq (2) txFreq (3) wod2 (29)
 Reserved (5) nothing here anymore Use 1757. txFreq (3) squelchLevel (4) wod3 (30)
 squelchLevel (4) wod4 (31)
 wod5 (32)
 wod6 (33)

 presets (6)
 availableTable (1)
 activeTable (2) availName (1) *
 defaultTable (3) vc (1) * keySet
 bridgeTable (4) defaultName (1) * activeName (2)
 repeaterTable (5) bridgeName (1) * keySet TBD
 saveFile (6) repeaterName (1) * updateChannelStatus
 normalOps (7)
 totalPresets (8)

Figure C-13. Sample Management Information Base Content

C-C-35/(C-C-36 blank)Originally Published 7 May 1999

MSRC-5000SRD
Appendix C

C-C-36

MSRC-5000SRD
Appendix C

C-C-37

 lastKnownActiveStateTable (9) same as activeTable
 templatesTable(10) vc (1) *
 partialTemplateTable (11) tIndex (1) * lastKnownName
 useDefaultOnStartup (12) ptIndex (1) * keySet

 LRUs to Poll
 audio
 MIBs to use… blackBridge
 USE RFC1155.SMI blackHost
 gps (7) USE RFC1757.MIB blackIO
 time (1) USE RFC1643.MIB bridges (4 ea)
 date (2) USE RFC1212.MIB carrierBoard
 latitude (3) USE RFC1213.MIB codec
 longitude (4) USE RFC1215.MIB CryptoDevice
 velocity (5) USE RFC1516.MIB cse
 gmtCorrection(6) USE RFC1514.MIB daqModule
 altitude (7) digital I/O
 year (8) dspIOmodule
 dualBridge
 eia530IOInterface
 extension (4 ea)
 switches (8) externalRF
 masterZeroize gps
 indicators (9) masterReset handset
 frontPanel (1) cryptoBypass hardDrive
 cryptoIndicator (2) transmit (1) cyptoZeroize TBD hmiInterface
 bypassTable receive (2) cryptoReset hostSBC
 alarmTable bypassSet plainText (3) hotSwapBC
 signalPresence alarmDescr OriginatorWimId* encryptedText (4) mbdCarrier
 failure OriginatorWimId batteryStatus (5) modeCarrier
 systemTest (10) cikActive noKey (6) modem (4 ea)
 systemDiag (1) cryptoAlarm mpc750SBC
 quickPwr (2) ituOperational TBD piu
 normalOps (3) piuOperational portCards
 lruDiag (4) overTemperatue power
 externalLoopback (5) keyLine preselector (8 ea)
 transmitPwrLevel redAudio
 onlineTest redDigital
 BIT traps redHost (4 ea)
 comsecMode std v1 redIO (4ea)
 coldStart rs422Interface
 warmStart rxControl
 linkDown rxModule (8 ea)
 linkUp security (4 ea)
 authentication specialIO
wits3002-acn (2) -- future egpNeighborLoss systemReference
wits5004-flywway (3) -- future enterpriseSpecific trControl (8 ea)
wits6004-dmrPlus (4) -- future Not Registered txControl

 componentFailure txModule (8 ea)
Other MIB-II deviceFailure wim (4 ea)

rmon's alarmTable invalidConfig
m2 transmission ?
m2 interfaces
m2 system
m2 & rmon ethernet errorTypes b --> and traps -->
1757 rmon alertCondition

Reserved (4) 1516 802.3 repeaters tearDownFailure
Reserved (5) 1515 802.3 other insufficientResources
experimental (6) instantiateFailure

objAcctFailure
deviceFailure
saveFile
redStartFailure

Figure C-13 (Continued). Sample Management Information Base Content

C-C-37/(C-C-38 blank)Originally Published 7 May 1999

MSRC-5000SRD
Appendix C

C-C-38

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-39

 These MIB features resemble many features in today’s organic non real-time operating

systems. The challenge at hand is to provide a scalable approach that will work from the small

hand held JTR to the large fixed/Maritime application.

 Table 358 describes the functional attribute sets for the Configuration Management

Function. Described for each attribute are its interfaces to the other entities, the type of interface

data, internal System Control Interfaces, the tiered functionality provided and trades and

examples. The listing represent examples of the attribute if implemented with today’s

technology.

 Functional
Attribute Interface Interface Data

 Internal
Interfaces

 Tiered
Functionality Trades and Examples

 Startup/Shutdown
Operations

 None Fault
Management,

 System Control
Management

 Basic functionality
provides all
requirements

 None System Control
Management

 Basic functionality
provides all
requirements

 None System Control
Management

 Basic functionality
provides all
requirements

 None System Control
Management

 Basic functionality
provides all
requirements

 All Entities Specific
startup/Shutdow
n Commands
sequenced to
readiness of
initialization
data and
recording of
state data

 All Basic functionality
provides all
requirements

 Antenna,
PA, RF,
Modem,
INFOSEC,

 Waveform

 Operating state
parameters

 System Control
Management

 Establish System
Configuration

 HMI Preset
command

 Virtual channel
Management

 Feasibility of utilizing standard
Management Information
Bases as method of
maintaining configuration
status

 HMI Configuration
data for each

 Virtual channel
Management

 Save physical and virtial
information

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-40

 Functional
Attribute Interface Interface Data

 Internal
Interfaces

 Tiered
Functionality Trades and Examples

waveform and
physical
equipment
component

 None Preset data
resident in non-
volatile memory

 Virtual Radio
Management

 Is preset by individual operator
required

 Presets storage by
“operational Scenario” vs
impact upon storage media

 Maintain System
Configuration

 Basic: See Figure C-13 for example

 Applicability of industry
standard compression
algorithms that could be
implemented

 Investigate other options from
COTS

 Software
distribution

 ALL Initialization
parameters to
entities that are
unique to the
software load

 System
configuration
management,
virtual channel
management

 Basic: Accept load

 Advanced: Manage
distribution

 Investigate the potential that
this function can be
implemented primarily through
features of Object software
tools

90545-358

Figure C-14. Configuration Management Summary Detail

Trade Studies

 No Trade Studies were performed in this area. Many configuration management examples exist

and support the separation of subcore functions as defined for System Control.

Additional Trades / Investigations:

(j) Consideration of current network management protocols that support internal and external

data sharing.

(k) Use of COTS download tools.

(l) Applicability of industry compression methods for data storage.

C.1.3.4 Fault Management Considerations, Rationale, and Trades

 Fault Management provides a clearly defined mechanism for fault detection during start-up,

shutdown, real-time, and diagnostic. Fault isolation functionality is allocated to the lower level

entities in BIT, with control provided by the Fault Management functions within System Control.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-41

The Fault Management Considerations, Rationale, and Trades are discussed in the following

paragraphs.

Fault Management Considerations

Figure C-15 summarizes Fault Management Considerations by Functional Attribute.

 Functional
Attribute

 Implementation
Consideration Remarks

 Startup BIT Detect and Identify Faults,
Isolate to defined
component level, Correct,
virus checks

 BIT functions are allocated to the "lowest" resource e.g. power amp.
Interface commands to Fault Management is the same for all
entities. Legacy entities incorporated by "wrapper" around legacy
resource. Detected faults reported by entity to Fault Management

 Shutdown
BIT

 Detect and Identify Faults,
Isolate to defined
component level, Correct,
virus checks

 Same considerations as Startup Bit, but operator log and Interface
to Configuration Management provides indicator of service
interruption and need for corrective action

 Real-Time
BIT

 Detect and Identify Faults,
Isolate to defined
component level, Correct,
virus checks

 BIT functions are allocated to the "lowest" resource e.g. power amp.
Real time BIT is less thorough that startup BIT to reduce
processing requirements. Interface commands to Fault
Management is the same for all entities. Legacy entities
incorporated b

 Diagnostics/
Correction

 LRU level diagnostics
designed to isolate at
lowest possible level
where a fault lies so the
LRU can be replaced.

 Growth,
 Simplicity for the operator

 90545-249

Figure C-15. Fault Management Considerations

Fault Management Rationale

Functional Attribute Set

 Fault Management provides activation, control, and report for the BIT functionality. The

fault isolation aspect of this functionality is allocated to the other entities in BIT, with control

provided by the Fault Management. Each entity possessing physical resources is responsible for

implementing BIT test relative to the function of that entity. Interface between the Fault

Management entity and other entities is common across entities and follows a defined interface.

 The Fault Management functionality is divided into subfunctions of Start-Up BIT, Real-

Time BIT, Shut-down BIT, and Diagnose / Correct.

 Start-up BIT runs upon initiation, i.e. power-up of the JTRS. Through allocation of BIT

functions allocated to lower level resources, implementation of BIT can be made specific to the

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-42

resource as required. Details of the resource itself remain hidden from the Fault Management

function. The logging function of BIT uses standard processing resources so that the existing

entity interfaces, particularly HMI can be utilized for alerting and visualization of results. A

significant architectural consideration is the ability to wrap legacy equipment. BIT interface to

legacy resource elements that might be included in JTR implementations are accomplished via

“wrapper” around the legacy resource. This wrapper allows the same IDL interface to the Fault

Management element to maintain commonality, standardization and open systems structure.

This also allows easy incorporation of third party components.

 Shutdown BIT, like Start-Up BIT invokes full BIT through the functionality resident in the

entities with resources. Shut-down BIT, however, runs upon system shutdown and logs data for

use by Configuration Management and channel management at the next restart to establish a

reliable configuration. It also provides the option enter the diagnose/correction function use BIT

results. BIT results are logged prior to shutdown and alerted to allow operator action if desired.

 Real-time BIT Real-time BIT capabilities remain allocated to the entities possessing

resources. The real-time BIT is simplified to require fewer system resources and is limited to

those BIT functions that are non-intrusive. Fault logging uses standard processing resources so

that the existing entity interfaces, particularly HMI can be utilized for alerting and visualization

of results. Fault results are identified by significance thresholds so that operator receipt of alerts

can be tailored for the operator’s work load. Fault information is passed to Virtual Channel

Management of for use in potential reconfiguration.

 Diagnostics/Correction provides control of lower level diagnostics as provided by vendors

or for specific equipments. These diagnostics are below the line but must be provided to

maximize service availability and allow field fixes. The operator may choose to activate specific

diagnostic / correction functions when the radio is in a non-operating state. This provides

additional detailed troubleshooting of problems as desired by the operator.

 Figure C-16 describes the functional attribute sets for the Fault Management Attribute.

Described for each attribute are its interfaces to the other entities, the type of interface data,

internal System Control Interfaces, the tiered functionality provided and trades and examples.

The trades identified are presented later in this section. The examples represent examples of the

attribute if implemented with today’s technology.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-43

 Functional
Attribute Interface Interface Data

 Internal
Interfaces

 Tiered
Functionality Trades and Examples

 Startup Bit All Entities With
Resources

 Bit Commands,
Threshold Values:
Bit Status, Bit
Results

 Virtual Channel
Management,
Configuration
Management

 Basic
Functionality
Provides All
Requirements

 Examples, PA Bit, RF Bit,
Process Memory Test
 See Trade 2

 Shutdown BIT All entities with
resources

 BIT Commands:
BIT Status, BIT
Results, BIT Log
data

 Configuration
Management

 Basic
functionality
provides all
requirements

 Real-Time BIT All entities with
resources

 Threshold values,
BIT Override
Commands: BIT
Status, BIT results

 Performance
Management,
Virtual Channel
Management

 Basic
functionality
provides all
requirements

 Examples, memory parity
checks, PA BIT
 Method of standardizing (and
making open) BIT level
interfaces.
 Potential cost increase if
COTS/existing components used
that do not implement the
standard BIT interface

Diagnostics/Corre
ction

All entities with
resources

Alarms, general
status

Performance
Management,
Virtual Channel
Management,
Configuration
Management

Basic Assess all
as appropriate

See Trade 2, Trade 3

 90545-538

Figure C-16. Fault Management Summary Detail

Trade Studies

Trade Study 2: Alternatives for Fault Detection and Isolation Schemes

 Figure C-17 provides a trade of alternatives for Fault Detection and Isolation Schemes.

Alternatives to be considered are:

• All fault isolation accomplished within the same object/layer

• Single fault isolation software for all detection and isolation

• Layered functionality: BIT/Performance Monitoring/Smart Functions

• Separation of BIT by mode – ie. Start-up, real-time, off-line, shutdown

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-44

 Alternative Pros Cons

 All fault isolation
accomplished within
the same
object/layer

 Minimizes number of interfaces

 Provides single object for
implementation of functionality

 Increases complexity of fault isolation logic

 Makes fault isolation function dependent upon all components

 Makes it extremely difficult to incorporate COTS or legacy
components

 Single fault isolation
software for all
detection and
isolation

 Allows for fault isolation function to be
common across all operating modes

 Provides all fault isolation functions
continuously

 Resource requirements to perform all functions continuously are
high – processing time, memory, bandwidth—potentially
degrades performance

 Some fault isolation functions may require interruption of real
time service

 Overhead of single function with all capabilities increases cost

 Layered functionality:
BIT/ Performance
Monitoring/Smart
Functions

 Provides separation of functions and
interfaces

 Allows software layers that correspond
to the information layers

 Facilitates wrappers for interface to
legacy/COTS components

 Separates functionality for test and
maintenance

 Requires separate definition of layered interfaces

 Makes higher layers more abstract

 Separation of BIT by
mode – ie. Start-up,
real-time, off-line,
shutdown

 Separates functionality by processing
phase

 Minimizes the size and processing
requirements of each mode

 Allows more intrusive testing during non
real-time for detailed fault isolation

 Requires implementation of separate elements for each mode

 Increases the complexity of the fault isolation control functions

Figure C-17. Trade 2 -- Alternatives for fault detection and isolation schemes

Trade 2 Conclusions:

 The trade analysis shows that higher benefit is obtained by implementing layered

functionality between BIT, performance monitoring and smart functions. Layering these

functions is the only effective method of incorporating BIT associated with legacy components.

Further, this analysis shows that separating BIT functionality operation by operating mode will

reduce resource requirements.

Additional Trades / Investigations:

• Trade to allocate functionality between layers.

• Trade for allocation of characteristics of BIT for each mode.

• Trade for standardization of BIT across entities.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-45

Trade Study 3: Degree of System Versus Entity processing for Fault Isolation

Figure C-18 provides a trade of alternatives for Fault Detection and Isolation Schemes.
Alternatives to be considered are:

• BIT functionality is contained entirely with the System Control Fault Management

Attribute

• BIT functionality is allocated to the functional entity possessing the resources being

tested

 Alternative Pros Cons

 Functionality is contained
entirely within the System
Control FM function

 1. Relieves entities of complexity of BIT
implementation

 Requires the FM function to have
knowledge of entity characteristics.
This is a very substantial negative in an
object oriented architecture

 Some inefficiency exists for central BIT
interfaces to each entity for detailed
information

 BIT functionality is
allocated to the functional
entity

 Information and interface for BIT are
closest to implementation of the
functionality

 FM function is simplified as is interface to
entity

 Substantially easier to wrapper BIT
implementations in COTS/ legacy
entities

 Each entity is responsible for BIT
implementations.

 Potential for diverse BIT implementations
exists. This can be minimized by use
of defined standards.

Figure C-18. Trade 3 Degree of System Versus Entity Processing

Trade Conclusions:

 The trade analysis shows that BIT functionality is best allocated to be performed within the

functional entity where the resources are being tested. Negative aspects of this approach are

minimized when a defined BIT interface is used to all entities.

Additional Trades / Investigations:

Define the standard to be used for BIT to entity interface.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-46

C.1.3.5 Performance Management Considerations, Rationale, and Trades

 Performance Management provides a monitoring and reporting functions for the radio

parameters. This function is tightly coupled with Virtual Channel Management to achieve

reconfigurability and graceful degradation. The Performance Management Considerations (see

Figure C-19), Rationale, and Trades are discussed in the following paragraphs.

Performance Management Considerations

Figure C-19 summarizes Performance Management Considerations by Functional Attribute.

 Functional
Attribute

 Implementation
Consideration Remarks

 Monitor and
Analyze

 Radio Link Performance Real time parametric data received from each of the black side entities. Further
processing done e.g. trend data, threshold checking,

 Networking Performance Real time parametric data received from Internetworking Entity. Further
processing done e.g. trend data, threshold checking,

 Encryption System
Performance

 Real time parametric data received from INFOSEC Entity. Critical parameters
pre-defined for appropriate system actions. Further processing done e.g. trend
data, threshold checking,

 System Status Reporting Performance data for all system (all entities) logged. Real-time alerts and
warnings provided to operator via HMI. Automatic reconfiguration signaled to
Virtual Channel Management. All actions accomplished as per configuration
data definitions for the

 Tune and
Control

 Assessing performance
(system or application) and
decision making with some
policy based on configuration

 Trend data from each entity correlated and tune "decision making" made based
upon configuration data threshold settings. Policy rules also obtained from
configuration data settings. Real time operator change and override provided
through HMI entity.

 Memory for storage based on length of mission/ domain

 Smart
Functions

 Graceful Degradation Adjustments to resource assignment made via interaction with virtual channel
management. Smart function interacts with Virtual Channel Management to
attempt load transfer to other resources before degraded resource below preset
thresholds. Automatic or m

 Automatic Reconfiguration Decision-making based upon performance trends, threshold settings, and policy
data. Smart function interacts with Virtual Channel Management to dynamically
determine "best available" resource assignment

 90545--XXX

Figure C-19. Performance Management Considerations

Performance Management Rationale

Functional Attribute Set

 Performance Management provides the monitoring and reporting of radio performance and

includes monitoring of specific aspects of the radio functions.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-47

 Monitor and Analyze provides the analysis of data received from each of the entities. It

receives parametric information and performs threshold and trend processing upon the

information. The attributes of this processing are grouped logically to correspond to the legacy

radio functions. Included are Radio Link Performance, Networking Performance and Encryption

System Performance. Radio data and control information are separated to speed and simplify

system operations and comparison of trend information for data versus logic checks on control

information. Radio Link Performance receives and processes parametric data from Modem and

RF entities (including Power Amplifiers, Antennas, and RF). The analysis includes status

checks, error correction and comparison of parametric data to thresholds and trend information.

Networking Performance receives and processes parametric data from the InterNetworking entity

to support tune and control, network loading, throughput, and comparison of parametric data to

thresholds and trend information. Encryption System Performance receives and processes

parametric data from INFOSEC. Key performance areas include, but are not limited to status

checks, performance, pre-defined critical parameters and trend/threshold checks. Performance

results are compared to baseline information to assist in intrusion detection.

 Tune and Control functions provide adaptive control parameter changes that have been

determined based upon the results of the performance data and comparison to pre-established

logic and historical trend records. Tune and control functions change only the radio control

parameters associated with radio processing on an existing channel. This function assesses

control parameters and provides decision making based on policy. Condition “trees” are pre-

established to define most logical tuning control parameter changes to make in response to

current parametric data and recent trends. Policy data can be local, imported or obtained from

remote data bases. Early detection of poor performance is accomplished through scalable

algorithms based upon comparison of current parameters and recent trends. Thresholds are

established for tuning control actions to provide corrective control inputs before radio

communications are lost. Authorized operator override is provided for individual parameter

adjustments, specific policies or all automatic tuning features.

 Smart Functions are intelligent algorithms that perform specific radio control actions based

upon complex and adaptive logic conditions. Like the tune and control function, the actions are

based upon parametric performance data, trend information, historical performance data and

policy to take radio control actions. Unlike the tune and control function, the radio control

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-48

actions encompass changes to the configuration or operation beyond the individual channel.

Two specific actions that are included are Graceful degradation and Automatic Reconfiguration.

As JTRS devices are implemented and field performance tested, many other Smart Functions

will likely be developed. Graceful Degradation consists of adjustments to resource assignment

made via interaction with Virtual Channel Management. This function notifies the operator of

impending degradation below pre-determined thresholds that is uncorrectable by the Tune and

Control function. Alerts are provided to both the operator and the Virtual Channel Management

for Automatic Reconfiguration processing. Automatic Reconfiguration responds to early

detection of poor performance by identifying potential configuration to Virtual Channel

Management.

 Table 539 below describes the functional attribute sets for the Performance Management

Attribute. Described for each attribute are its interfaces to the other entities, the type of interface

data, internal System Control Interfaces, the tiered functionality provided and trades and

examples. The trades identified are presented later in this section. The examples represent

examples of the attribute if implemented with today’s technology.

 Functional
Attribute Interface

 Interface
Data

 Internal
Interfaces Tiered Functionality Trades and Examples

 Radio Link
Performance

 Antenna Entity,
PA Entity, RF
Entity, Modem
Entity

 Performance data
specific to each
entity, e.g. BER

 Virtual Channel
Management,
Configuration
Management

 Basic functionality is simple
transmission related parameter,

 Medium functionality is analysis
of data content with content
significance

 Advanced functionality is
integration with Smart Function
to adapt dynamically to
changes in link performance

 Networking
Performance

 Internetworking
Entity

 Performance data
specific to
Internetworking,
e.g. packet loss

 System Control
Management,
Configuration
Management

 Simplest level will be port of existing
software and algorithms.

 Important feature is the ability in the
software architecture to “wrap”
existing software/hardware that
exists as COTS components.

 Incorporating this level is essentially
equivalent to replicating today's
technology

 Encryption
System
Performance

 INFOSEC Entity Performance data
specific to
INFOSEC entity,

 Security
Management,
Configuration
Management

 Complete functionality is
required at all levels

 System Status
Reporting

 HMI Entity Fault Data,
Performance
Data,
Performance
trend versus
reconfiguration
history

 Configuration
Management

 Basic parametic data

 Trend analysis results

 Automated alerting from Smart
Functions

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-49

 Functional
Attribute Interface

 Interface
Data

 Internal
Interfaces Tiered Functionality Trades and Examples

 Assessing
performance
(system or
application)
and decision
making with
some policy
based on
configuration

 HMI Entity Input parameters,
Status data

 Virtual Channel
Management,
Configuration
Management

 Tune based upon single
function/waveform

 Tune based upon optimizing for
all current radio functions

 Tune based upon optimizing a
logical grouping of radios

 See Trade #4
 In a software radio, control and data
are data structures, therefore
internal separation is a matter of
data structure partitioning

 External I/0 should be partitioned for
control and data

 Exception is that control which is
embedded in the waveform itself.

 The important distinction between
control and data is made during the
determination of specific
requirements for data flow, timing
and throughput.

 Graceful
Degradation

 None None external to
the entity

 Virtual Channel
Management,
Configuration
Management

 Substantial legacy PM
functionality exists in this area

 Some development would be
required due to the software
nature of the JTRS

 Algorithms, parameter
thresholds, etc can be taken
from legacy applications

 At this level, some of the
processing would require
awareness of the data content

 Another way of describing this is
that it is the “protocol” level of
performance monitoring.
Decisions are made not just on
the accuracy or throughput, but
the functional context of the
data.

 Might require network content data
from other resources in the logical
network.

 Automatic
Reconfiguratio
n

 None None external to
the entity

 Virtual Channel
Management,
Configuration
Management

 See Trade #4
 The minimum functionality in this
area are the PM functions required
to support:

 Reconfiugrability

 OTA reconfiguration

 Networking functionality

 Other virtual channel management
functions

 The point we need to make is that the
we define an architecture that will
support the addition of the higher
complexity and higher cost
monitoring functions as they are
needed by users and the application.

 Introduce the idea of a truly open
architecture developed to standards
will support the addition of
functionality and “third party” add-on
functionality throughout the life of the
radio.

 Thus, the cost of specific PM
capabilities can be born by the users
who need it.

Figure C-20. Performance Management Summary Detail

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-50

Trade Studies

Trade Study 4: Performance Monitoring Options and Cost

 This trade addresses Performance Monitoring Options and cost and is presented as an

analysis rather than a comparative trade.

 Assumption: The JTRS will be developed and procured within the context of specific cost

objectives consistent with concepts of Cost As an Independent Variable (CAIV).

 In the architecture definition and later implementation of the JTRS, performance monitoring

options can range from very simple and traditional measures, such as bit-error-rate, to much

more complex and adaptive monitoring that involves substantial research, development and

testing to establish the validity of the measure. A generic representation of the cost versus

complexity that follows the shape of accepted software development cost curves is depicted in

Figure C-21.

90545-186Complexity

Performance Monitoring Cost

C
os

t

Figure C-21. Performance Monitoring Cost – How Cost Varies with Complexity

 The trade study issue becomes one of how to define in the architecture the appropriate level

of Performance Monitoring measures that is consistent with the JTRS CAIV objectives. The

problem is that at this stage of the JTRS architecture definition, the allocation of CAIV

objectives specifically to Performance Monitoring Options is not known.

 The solution is to define an architecture that supports basic Performance Monitoring

functionality and provide an architecture that allows for growth as technology and development

mature and CAIV objectives are specifically allocated. This solution implies, therefore, a tiered

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-51

Performance Monitoring functionality that provides at least the minimum requirements and

allows for continued development and implementation of options as depicted in Figure C-22.

 Tier Tier Description Examples of Monitoring Options
 Basic Simplest level incorporating the evaluation of parametric data from

the entities. In most cases this will involve the implementation of
algorithms that are commonly known and accepted.
Implementation may involve port of existing algoritm/software or
“wrapping” existing functionality from COTS elements.
Incorporating this tier of functionality is equivalent to replicating
existing technology.

 Signal to Noise Ratio,

 Bit Error Rates

 Throughput

 Intermediate Some development may be required due to the software defined
nature of the JTRS. Processing requires “awareness” of the data
content. Monitoring decisions are made not just on the
parametric data versus thresholds, but additionally upon the
functional context or the data. This tier may require network
content data from other resources in the network

 Implementations of algorithms with
parameter thresholds to change and
“tune” radio parameters.

 Evaluation of “best” reception across
schemes for allocating channels across
physically separated radios.

 Advanced Development of intelligent agents is required. At this tier,
information produced by FM and PM is used to perform artificial
intelligence type decisions. Some level of development of the
performance monitoring options is required to support
reconfiguration. Information from networked resources is critical
to many decisions

 OTA reconfiguration

 Dynamic reallocation of channels due to
propagation loss or interference.

 Reconfiguration due to loss of radio
resources in the network.

Figure C-22. Tiered functionality definition

 The JTRS architecture objective for performance monitoring options and cost is to develop

and initial set of low, intermediate, and advanced performance monitoring functions that satisfy

the JORD requirements and provides an architecture within which additional functionality can be

easily developed. This architecture would support capabilities consistent with CAIV objectives.

It will also support and “third-party” add-on capability during the life of the JTR. Achieving

these objectives requires a JTR architecture that is open and utilizes standard interfaces where

available.

Trade Conclusion:

 The trade analysis concludes that a tiered functionality that implements the required

performance monitoring options while providing the ability to incorporate add-on functions will

best support the JTRS cost objectives. This conclusion further substantiates the need for an open

systems and standards based architecture.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-52

Potential additional trades to be conducted in the next phase are:

• Define specific monitoring functions for each tier.
• Identify any potential additional requirements require to support future third-party add-on

capabilities.

Trade Study 5: System Control treatment of data vs control information:

Figure C-23 details a trade detailing the treatment of data vs control information. Alternatives to

be considered are:

• Isolation of control information and data
• Combination (or lack of segregation) of control information and data

 Alternative Pros Cons
 Isolation of control information
and data

 The Software Defined Radio Forum*
recommends segregation of data and control
information

 Segregation of Control Information and data
facilitates throughput design objectives

 Processing of data and control information in
logically separated, consistent with an object
architecture.

 Simplifies performance monitoring
 Simplifies Virtual Channel Management
accomplishment of reconfigurability

 Data flow, timing and throughput design
will require separate analysis and
allocation for resources

 Combination (or lack of
segregation) of control
information and data

 1. Combination of data and control
information may simplify hardware
requirements in some implementations.

 1. Embedding control information as
part of the data stream requires
substantial additional processing of the
data stream to extract the control
information. This processing could
delay time-critical data

Figure C-23. Trade 5 -- System Control of Data vs Control Information Trade

Trade 5 Conclusion:

 The trade analysis is clear that control information and data should be segregated. The

Software Defined Radio Forum (SDRF) Technical Report 2.0, Architecture and Elements of

Software Defined Radio Systems as Related to Standards, dated March 1999, contains a good

description in Applications Program Interface (API) Design Guidelines that supports this trade

conclusion. Specific implementations of the JTRS architecture may accomplish this separation

in different ways.

 Note that a caveat exists in the case that the control information is embedded in the data as

defined by the protocol itself, or when the control information is tightly synchronous with the

data.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-53

Trade Study 6: Graceful Degradation

Figure C-24 details a trade for Graceful Degredation options. Alternatives to be considered are:

• Isolate graceful degradation responsibility to functional entities

• Allocate graceful degradation to Fault Management Attribute

• Allocate graceful degradation to Performance Management Attribute

• Allocate graceful degradation to Virtual Channel Management Attribute

• Allocate responsibility for graceful degradation across functional entities, Fault Management, Performance

Management and the Virtual Channel Management Attributes

 Alternative Pros Cons

Isolate graceful degradation

responsibility to functional

entities

Processing is closest to the resources

and involves fewer interfaces

Functional entities will be aware of

“hard failures” consistent with the BIT

allocation.

Functional entities have no knowledge

of other resources to enable alternative

resource usage

Functional entities would require the

same interface and data to perform

graceful degradation that exists in

System Control Attributes

Functional entities would have to have

logic to analyze parametric trend that

parallels that in the PM function.

Allocate graceful degradation

to Fault Management

Fault management is aware of BIT

status from all entities and can receive

“hard failure” notification

Fault Management attribute would have

to have logic to analyze parametric

trend that parallels that in the PM

attribute.

Functional entities have no knowledge

of other resources to enable alternative

resource usage

Allocate graceful degradation

to Performance Management

PM attribute has the function of

receiving parametric data from all

entities and can analyze trend data to

detect degraded performance

Hard failure notification would need to

be duplicated similar to FM attribute,

thus creating another interface for all

entities.

Functional entities have no knowledge

of other resources to enable alternative

resource usage

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-54

 Alternative Pros Cons

Allocate graceful degradation

to Virtual Channel

Management Attribute

VCM receives and maintains data on the

availability of all resources

VCM would have to maintain duplicate

data and logic to FM attributes to be

aware of hard failures

VCM would have to maintain duplicate

data and logic to PM attributes to

detect degraded performance

Allocate responsibility for

graceful degradation across

functional entities, FM, PM

and Virtual Channel

Management (VCM)

FM, PM and VCM attributes already

have allocated functionality for

processing data required for graceful

degradation.

Allocation of functionality is consistent

with the BIT scheme

An interface between FM, PM and

VCM is necessary to communicate

adequate information to implement

graceful degradation.

Figure C-24. Trade 3 -- Graceful Degradation

Trade 6 Conclusion:

 The trade analysis clearly indicates that processing to accomplish graceful degradation is

best implemented within the allocation of functionality for entities, the Fault Management

attribute, the Performance Management Attribute, and Virtual Channel Management Attributes.

An interface can be defined that can be consistent with the Virtual Channel Management overall

functionality and minimizes the duplication of processing between subfunctions.

C.1.3.6 Virtual Channel Management Considerations, Rationale, and Trades

 Virtual Channel Management provides a the coordination of resources necessary to support

dynamic allocation of the resource as necessary. It coordinates resources to provide waveform

management, channel management, manage channel availability and utilization. It additional

supports the resource management portion of Smart Functions. The Virtual Channel

Management Considerations, Rationale, and Trades are discussed in the following paragraphs.

Virtual Channel Management Considerations

 Figure C-25 summarizes Virtual Channel Management Considerations by Functional

Attribute.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-55

 Functional
Attribute

 Implementation
Consideration Remarks

 Waveform
Management

 Waveform Preset
Management

 Waveform entity responsible for defining default preset for each
waveform.

 This service provides maintenance of Library of preset for each
waveform and interfaces with HMI to provide loading, editing,
and related operator interaction

 Circuit Preset Management Default circuit configurations will pre defined
 This service provides maintenance of Library of preset for each
logical circuit and interfaces with HMI to provide loading,
editing, and related operator interaction

 Instantiation Determines and communicates waveform parameters to
entities requiring parameters unique to waveform.

 Determines and loads specific startup objects necessary to
initialize a wave form.

 Determines and loads specific real-time objects required for
each waveform

 May require communication through INFOSEC between
black/red side processing

 Virtual Radio
Management

 Multiple Channel Operation Maintain availability data for each channel
 Physical
 Logical (in remote configurations)
 Maintain status of assignment of channels to mission
“scenarios”

 Provide changes resulting from operation intervention
 Black/Red synchronization Maintain data regarding process with dependent components

on both black and red sides
 Communications necessary time/data synchronization via
INFOSEC entity

 Saving last good state Maintain Current State data
 Periodic recording to non-volatile memory source

 Ability to transfer control
information from one radio
to another as a response to
poor channel performance

 Uses same interface and objects as the local virtual channel
management

 Maintains data to communicate virtual channel management
parameters and commands to the virtual channel
management objects residing in other radios

 Uses Internetworking services to transport virtual channel
management data to virtual channel management objects in
other radios.

 Receives performance information input from performance
management

 Smart Functions Automated radio features
added as tiered functionality
is developed

 Open systems and object enabled software architecture are
required to enable the progressive addition of tiered
functionality

 90545--XXX

Figure C-25. Virtual Channel Management Considerations

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-56

Virtual Channel Management Rationale

 Functional Attribute Set
 Virtual Channel Management is responsible for maintenance of information regarding local

and remote resources. Its functions include Waveform Management, Virtual Radio

Management, and Smart Functions.

 The Waveform Management functions provides processing and coordination to instantiate

the appropriate waveform. This includes data and parameters, object load and initialization and

coordination with INFOSEC to establish black/red side processing as required. In accomplishing

this function, management is provided for waveform presets, circuit presets and waveform

specification.

 The Virtual Radio Management function provides for multiple channel operation. It

manages the physical resources of the local radio and maintains logical management of resources

in remote and networked configurations. This function also provides the sychronization

necessary between black and red side processes for both time and data. This function

continuously maintains and periodically logs the last good state of the operating configuration. It

provides the ability to transfer control information from one radio to another using the same

interface and objects as the local virtual channel management.

 Smart functions are a part of the virtual channel management. These functions will be

tiered and implemented as the functionality is developed. This functionality is closely tied with

performance management and assist with the resource allocation to accomplish graceful

degradation and reconfigurability.

 Figure C-26 describes the functional attribute sets for the System Control Management

Attribute. Described for each attribute are its interfaces to the other entities, the type of interface

data, internal System Control Interfaces, the tiered functionality provided and trades and

examples. The trades identified are presented later in this section. The examples represent

examples of the attribute if implemented with today’s technology.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-57

 Functional
Attribute

 Interface Interface
Data

 Internal
Interfaces

 Tiered
Functionality

 Trades and
Examples

 Waveform
Management

 Waveform,
HMI

 Waveform
parameters
required to
establish a
proper
waveform
function,
responses and
status

 Configuration
Management

 Operator defined presets

 Presets modified based
upon performance
monitoring/smart function
tuning from previous
operations

 Examples preset
parameters for Standard
UHF or for Link-11

 HMI Parameters for
circuit
configurations,
responses and
status

 Configuration
Management

 Operator defined presets

 Presets modified based
upon performance
monitoring/smart function
tuning from previous
operations

 Examples; connection of
a specific channel
receiving UHF clear
voice to audio channels
with indicator of clear
transmission

 Antenna,
PA, RF,
Modem,
INFOSEC,

 Waveform

 All parameters
required by the
specific
waveform,
response and
status of
instantiation

 Performance
Management ,
Fault
Management,
Configuration
Management

 Basic functionality
provides all requirements

 Example, Configuring a
the radio for Link-11
would require
establishment of a data
path through the
INFOSEC module for a
KG-40 compatible
encryption algorithm and
the correspond data
paths through both red
and black side
processing

 Virtual Radio
Management

 HMI,
Antenna,
PA RF,
Modem

 Channel
assignment,
status and
response

 Configuration
Management

 Basic functionality
provides all requirements

 INFOSEC Time/data
synchronizatio
n parameters

 Basic functionality
provides all requirements

 Example, Configuring a
the radio for Link-11
would require
establishment of a data
path through the
INFOSEC module for a
KG-40 compatible
encryption algorithm and
the correspond data
paths through both red
and black side
processing

 None Channel
assignment,
Waveform
parameters,
circuit
parameters

 Configuration
Management

 Basic functionality
provides all requirements

 Example, saving
frequency, channel
assignments, etc to be
recoverable for auto
restart in the case of
power loss

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-58

 Functional
Attribute

 Interface Interface
Data

 Internal
Interfaces

 Tiered
Functionality

 Trades and
Examples

 Internetwor
king

 Performance
management,

 Other virtual
channel
management
objects

 QoS options in and out of
a network

 Relationship to other
system control services to
achieve reconfigurability

 Smart
Functions

 All Determined
specifically for
each smart
function

 All Basic functionality is
human controlled features

 Intermediate functionality
includes those automatic
tuning and related control
features

 Advanced functionality
include features that
provide automated
reconfigurations and
decision-making that is
based upon trend data
from performance
monitoring

 Concept of tiered
implementation and
addition of functionality

Figure C-26. Virtual Channel Management Summary Detail

Trade Studies

 There were no additional trades in this area. They are covered under Fault Management and

Performance Management Trades.

C.1.3.7 Security Management Considerations, Rationale, and Trades

 Security Management provides recognition of requests which require mediation through the

JTR security functions. The Security Management Considerations, Rationale, and Trades are

discussed in the following paragraphs.

Security Management Considerations

 Figure C-27 identifies the implementation considerations for Security Management.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-59

 Functional
Attribute Implementation Consideration Remarks

 Entity
Authentication

 Verify the identity of entities (i.e. persons and automated
processes) that could cause JTRS actions to take
place

 Authenticate interfaces with external (process) entities

 Provide information to authenticate own identity

 Authenticate identity of (human) users. Potentially an
OS Service

 Mediated by System Control recognizing need
and invoking INFOSEC or security agent to
execute

 Access Control Protect JTRS resources from use by unauthorized
entities

 Provide discretionary access control based on user
privileges

 Limit the damage that could be caused by unauthorized
acts

 Mediated by System Control recognizing need
and invoking INFOSEC or security agent to
execute

 Information
Source
Authentication

 Verify to a JTRS entity that the identity of the original
source of information received by that JTRS entity is as
claimed.

 Mediated by System Control recognizing need
and invoking INFOSEC or security agent to
execute

 Audit Hold individual persons accountable for initiating or
participating in security-relevant events and actions in
the JTRS

 Maintain / archive application-level event logs

 Maintain / archive virus detection log.

Figure C-27. Security Management Considerations

C.1.3.7.1 Security Management Rationale

C.1.3.7.2 Functional Attribute Set

 Security Management recognizes requests which require security procedures and processes

to executes which are beyond it’s resources and invokes the INFOSEC or Security Entity to

execute the appropriate mechanism to ensure the system is protected from unauthorized use (see

Figure C-28).

 Functional Attribute Interface
 Interface

Data
 Internal

Interfaces
 Tiered

Functionality
 Trades and
Examples

• Entity Authentication

• Access Control

• Information Source
Authentication

• System Integrity

• Audit

 HMI, Networking

 Command
requests

 Infosec Basic: As defined by
INFOSEC

Figure C-28. Security Management Summary Detail

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-60

Trade Studies

 No Trades were performed in this area. It is viewed that Security Management within System

Control recognizes and forwards requests per security policy to INFOSEC.

C.1.3.8 System Control Functional Conclusions and Future Work

Key points which evolved through our discussions and investigations on system control

include:

• System Control is best separated into subfunctions to allow upgradability over time. These

include System Control Management, Configuration Management, Fault Management,

Performance Management, Virtual Channel Management, and Security Management. This is

commensurate with commercial network and systems control management philosophies.

• System Control provides overall control for the JTRS configuration. HMI and Networking

requests interface to PA, Antenna, RF, Modem, and INFOSEC Entities go through System

Control (TRADE #1).

• A well defined language supported with a network protocol best supports multiple operations

concurrently and simultaneously.

• Built-In Test is best allocated to the Lowest Replaceable Unit (LRU) to facilitate upgrading.

• A layered approach to BIT, Performance Management, and Smart Functions

C.1.4 Implementation Example

 For an example of an actual implementation of the Control Entity’s attributes, refer to the

released relevant interface control document (ICD) information presented below. Note that the

ICD information carries its own paragraph numbering and marginal data.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-61

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-62

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-63

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-64

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-65

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-C-66

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-1

Interface Description Tables

D.1 Antenna

 No. Interface Description

 1 RF Analog RF transmit & receive signals

 2 RF Analog

 Steering word

 RF transmit & receive signals

 Beam shaping, steering

 3 Frequency word Tuning control signal

 4 RF Analog

 Select word

 RF transmit & receive signals

 Switching control signal

 5 Control word Control signal

 6 BIT Status word Built In Test – operational status indication on request
90545-557

Figure D-1. Antenna Interface Description

D.2 Power Amplifier

 No. Interface Description

 (1) RF Input signals from RF
Distribution

 RF signals at a nominal impedance of 50 Ohms to the PA entity

 (2) RF out signals to Distribution RF signals at a nominal impedance of 50 Ohms out of the PA entity

 (3) Waveform Control Identifies the specific configuration requirements for the waveform to be amplified.
These parameters include.
• Timing of frequency transition

• Envelope characteristic, AM, FM, PSK, ASK.

• Filter type, input, output, band pass, low pass.

 (4) RF output power Sets the limit for the RF power output level

 (5) Overall PA Gain Sets the overall PA gain to compensate for input RF changes

 (6) Frequency Control Identifies frequency of TX . PA entity will select the proper amplifier and filter
combination in the entity.

 (7) Monitor Provides for communication of PA operational condition and RF signal status to
external and internal HMI functions

 (8) TX strobe Ensures correct timing of the PA entity within the system

 (9) BIT Initiation Allows initiation and monitoring of the condition of the power amplifier

 (10) Configuration Control Coordinated with system level control to report available capability of PA entity

 (11) Fault Clear (reset) Enables the system to reset following resolution of a fault or to override a fault
condition

 (12) Push to Talk (keyline) Commands the modules in the PA entity to switch to TX mode or to receive/standby
mode

90545-551

Figure D-2. Power Amplifier Interface Description

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-2

D.3 Cosite

 No. Interface Description

 1 Control (CNTRL) Control Interface to:
• Provide control to adjust parameters of cosite solutions such as frequency, path

switching, bandwith, etc.

• Obtain QoS information from within a single JTRS and from other JTR systems

• Provide control feedback for power, frequency, wave shaping, data rate, etc.

 2 RF • Provide access to RF points within signal path to allow insertion of
implementation specific solutions

• RF access points are RF receiver input, Local oscillator input within RF
functional entity, RF transmit output, RF Power amplifier output

Figure D-3. Cosite Functional Interfaces.

D.4 RF

 No. Interface Description

 (1) RF Power to RF distribution
network

 RF signals to be transmitted sent either to an antenna or to the power amplifier entity in
some applications.

 (2) RF Power Output control Signal received from the system to the RF entity that sets the desired RF power output
level.

 (3) RF Received Signals RF Signals received from the selected antenna structure to the RF Receiving entity via
the RF distribution network.

 (4) Automatic gain control Signals received from the system to the RF entity that sets the gain of the RF receiver.

 (5) Antenna control Control signal received from the system that sets the amplitude and phase of the
signals received from two or more antennas to adjust antenna gain and direction. An
identical control function exists for the transmit process.

 (6) Frequency tuning Control signal(s) received from the system that sets the center frequency(ies) of the
transmitter(s) and/or receiver(s).

 (7) Bandwidth control Control signal that sets the bandwidth of the transmitter and/or receiver.

 (8) Timing standard select Control signal that causes the RF entity to either generate the timing reference signal
for the system or accept an external timing reference.

 (9) Timing standard input External timing signal input (used when selected by the system).

 (10) IF signal to modem entity Digitized IF signal sent to modem entity via the system fabric.

 (11) IF signal input from modem
entity

 Digital signal received from the modem entity (via the fabric) for frequency translation
and transmission.

90545-110

Figure D-4. RF Interfaces

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-3

D.5 Modem

 No. Interface Description

 (1) Digitized IF from RF Digital baseband received signal

 (2) Transmit signal to RF Digital baseband transmit signal

 (3) Frequency control to RF Set the receive and transmit center frequencies (including hopping)

 (4) Automatic gain control to RF Level control based on the received signal

 (5) Demodulated information to
INFOSEC

 Received data bits or PCM analog signal

 Includes both encrypted data to be decrypted by Infosec and cryptovariables
transferred in the waveform preamble.

 (6) Transmit information from
INFOSEC

 Data bits or PCM analog signal to be transmitted

 (7) Process object definition and
initialization

 Download the program and configuration parameters for each process object.

 (8) Routing definition Download the definition of all direct data transfer paths between objects, as required
by critical timing paths.

 (9) Configuration control input Set all modulation and demodulation parameters

 (10) Hopset from INFOSEC For frequency hopping

 (11) PN chipping pattern from
INFOSEC

 For DS frequency spreading

 (12) RF T/R switching Transmit/receive switching.

 (13) Filter control to RF Adjust filter settings dynamically, based on received signal characteristics.
90545-134

Figure D-5. Modem Interfaces

D.6 INFOSEC

 No. Interface Description

 1 Red side modules to
application framework

 The red side modules make use of application framework facilities. The framework may
provide object request broker (ORB) facilities, and it may provide some INFOSEC objects.
The framework may provide objects with services that are used by more than one red
application. These application framework object specifications must prevent unintended
data flows between red side applications.

 2 Application framework
to operating system
and device drivers.

 The application framework uses device drivers, the operating system (OS) and the
separation kernel. The framework abstracts these facilities to the applications on the red
(and black) side modules. The mapping of application programming interfaces (API) to the
underlying real-time; generic-layer services must prevent unintended data flows between
red side modules, either by the framework itself, or by the underlying device drivers and OS.
Modules must eventually be mapped down to the tasks and memory regions that the
separation kernel controls. The framework performs this mapping to aid the creation of
applications that are portable across diverse hardware platforms.

 3 Operating System
Interfaces

 The OS abstracts the underlying processor and memory model to the next higher layer (in
our case the application framework layer). The OS supports device drivers and services that
may be used by multiple tasks. These OS services must prevent unintended data flows
between tasks. The OS uses separation kernel interfaces to help carry out its duties.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-4

 No. Interface Description

 4 Separation Kernel The separation kernel provides discrete domains of execution for system tasks. It also has
primitive task scheduling services. In some JTRS instantiations, some INFOSEC functions,
e.g., CIK and Zeroize, may require direct separation kernel interfaces (rather than an
application framework interface).

 5 Control bypass
interfaces

 The control bypass module receives requests from the red side modules to route control
information to the black side. The separation kernel restricts which red side modules send
requests to the control bypass module. The control bypass verifies the data being bypassed
are valid control-bypass data. The control bypass then routes the data to the appropriate
black side module.

 6 Black side modules to
application framework

 This interface resembles the application framework interface for the red side modules.
However, fewer concerns of unintended data flows exist on the black side because all data
are considered to be unclassified (i.e., no classified data will be compromised).

90545-320

Figure D-6. Primary INFOSEC Interfaces

D.7 Inter-Networking

 No. Interface Description

 1 Inter-Networking
Interface to System
Control

 The Inter-Networking Interface with the System Control Entity, receives requests, sends
requests, and sends status.

 The receive requests from System Control include:
• RF Link/QoS Table (at a periodic rate)
• Set Connection Security Level
• Establish/break virtual connection between two or more objects (people or processes) to meet

QoS requirements
• Establish/break fixed connectivity among users
• Configure/reconfigure the network entity protocol profile (functions and parameters)
• Allocation/reallocation of HW resources based on current network/radio configuration
• Update network software modules
• User access verification and authentication
• User priority
• Time of day information (at a periodic rate)
• Run BIT and diagnostics
• Get performance data (throughput, transit time, end to end response time, number of dropped

packets)

 The send response/status to System Control includes:
• Security Level of Connection Set
• Virtual Connection Set/Reset on Channel XYZ
• Fixed Connection Set/Reset on Channel XYZ
• Allocation/Reallocation complete
• Software Updated
• User Priority Set
• BIT Results
• Performance data

90545-115

Figure D-7. Networking Functional Interfaces with JTRS Entities (sheet 1 of 2)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-5

 No. Interface Description

 2 Inter-Networking
Interface to HMI

 The Inter-Networking Interface with the HMI receives user voice samples, and user requests.
Inter-networking processes the requests, compresses the user voice samples (as required) and
provides inter-networking services to the user. The user requests include:
• Push-To-Talk
• Set-up Full Duplex Circuit
The Inter-Networking Interface with the HMI also transfers from the Inter-networking digital
voice subsystem to the HMI, user voices samples (as required).

 3 Inter-Networking
Interface to INFOSEC

 The Inter-networking interface with the INFOSEC Entity is an information flow interface.
• Data is transferred to INFOSEC that contain a header which includes transmit channel

designator and security level, followed by the information.
• Data are received from INFOSEC with a header which includes receive channel designator

and security level followed by the information.
• For information received from the INFOSEC Entity, the Inter-networking Entity provides inter-

networking services required of the information and dispositions the information by
transferring it to a Baseband I/O connection, to the Inter-networking digital voice subsystem,
or transferring it to the INFOSEC entity for subsequent re-transmission.

 4 Inter-Networking
Interface to Baseband
I/O

 The Internetworking Interface with the Baseband I/O Entity receives information from the
Baseband I/O entity and transfers information to the Baseband I/O entity.
• For information received from the Baseband I/O Entity, the Inter-networking Entity provides

inter-networking services required of the information and dispositions the information by
transferring it back to a Baseband I/O connection, to the Inter-networking digital voice
subsystem, or transferring it to the INFOSEC entity for subsequent transmission.

90545-115

Figure D-7. Networking Functional Interfaces with JTRS Entities (sheet 2 of 2)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-6

D.8 System Control

 No. Interface Description

 (1) HMI Contol/Status
Object

 The System Control Interface with the HMI whether local or remote receives user requests,
processes the requests, and provides responses to the user. These requests include:
• Mode specification: local/remote, active/listening silence

• Select/Display radio-listening silence mode

• Configure radio and control unit for remote control

• Display local/ remote control status at radio and control unit

• Configuration request (Hardware or Software)

• Install/Configure HW

• Connect/Disconnect ancillary devices

• Software load initiation

• Load/Remove/Save software locally

• Display status of local load/ remove/ save

• Built-In Test Initiation

• Initiate BIT

• Display BIT results and troubleshooting information

• Display summary fault and troubleshooting information

• Waveform Specification & Parameterization

• Waveform parameter control (e.g. center frequency, data rate)

• Waveform setup/monitoring/load

• Define presets/Select presets/Display channel information associated with preset

 (2) Networking
Contol/Status
Object

 The System Control Interface with the Networking Entity sends/accepts requests, and
receives/processes responses to those requests and associated status. These requests
include:

• Establish/break virtual connection between two or more objects (people or processes) to
meet Quality of Service (QoS) requirements

• Establish/break fixed connections among users

• Configure/reconfigure the network entity protocol profile (functions and parameters)

• Allocate/reallocate HW/SW resources based on current network/radio configuration

• Update network software modules

• Set connection security level

• User access verification and authentication

• Distribute time of day information

• Run BIT and diagnostics

• Get performance data (throughput, transit time, end to end response time, number of
dropped packets)

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-7

 No. Interface Description

 (3) RF Contol/Status
Object

 The System Control Interface with the RF Entity sends/accepts requests, and
receives/processes responses to those requests and associated status. These requests
include:

• Configure Analog to Digital Converter (DAC)

• Configure Digital to Analog Converter (DAC)

(m) Configure RF Power amplifier

(n) Configure Automatic gain control

(o) Configure Equalization

(p) Configure Frequency tuning

(q) Configure Bandwidth control

(r) Select Timing standard

(s) Update RF software modules

(t) Establish connections to PA and Modem

(u) Run BIT

 (4) Modem
Control/Status
Object

 The System Control Interface with the Modem Entity which encompasses the Waveform Control
sends/accepts requests, and receives/processes responses to those requests and associated
status. These requests include:
• Establish/break virtual connections between RF, Modem and Infosec

• Configure/reconfigure modem profiles (functions and paramaters)

• Update Modem software modules

• Configure/reconfigure the Modem entity protocol profile (functions and parameters)

• Allocate/reallocate HW resources based on current network/radio configuration

• Distribute time of day information

• Run BIT and diagnostics

• Get performance data (transit time, throughput, end to end response time, SNR, BER)

• Configure/reconfigure Modulation Recognition (functions and parameters)

• Set Automatic Link Establishment parameters

 (5) INFOSEC
Control/Status
Object

 The System Control Interface with the INFOSEC Entity receives performance, status, and alarm
information for the INFOSEC entity. System control requests security services from the
INFOSEC Entity which include:
• Entity authentication

• Access Control

• Formation Source Authentication

• System integrity

• Audit

 (6) Power Amplifier
Control/Status
Object

 The System Control Interface with the Power Amplifiers sends/accepts requests and
receives/processes responses to those requests and associated status. These requests
include:

• Power Amplifier selection

• Power Amplifier settings

• Power Amplifier status and alarms

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-8

 No. Interface Description

 (7) Antenna
Control/Status
Object

 The System Control Interface with the Antenna sends/accepts requests and receives/processes
responses to those requests and associated status. These requests include:

• Antenna Selection

• Antenna settings

• Antenna equipment status and alarms

 (8) Black Side

Processes
Control/Status
Object

 The System Control Interface with the Black Side Processes, consists of standard interfaces for:
• Global Positioning System (GPS) receiver

90545--113

Figure D-8. System Control Functional Interfaces with JTRS Entities

D.9 Human-Machine Interface

 No. Interface Description

 (1) Control interface to
Control entity

 The HMI interface with the Control entity, whether local or remote, receives user requests and
provides responses to the user. These requests may include:
• Mode specification: local/remote, active/listening silence

Select/Display radio-listening silence mode

Configure radio and control unit for remote control

Display local/ remote control status at radio and control unit

• Configuration request (Hardware or Software)

Install/Configure HW

Connect/Disconnect ancillary devices

• Software load initiation

Load/Remove/Save software locally

Display status of local load/ remove/ save

• Built-In Test Initiation

Initiate BIT

Display BIT results and troubleshooting information

Display summary fault and troubleshooting information

• Waveform Specification & Parameterization

Waveform parameter control (e.g. center frequency, data rate)

Waveform setup/monitoring/load

Define presets/Select presets/Display channel information associated with preset

 (2) Data interface to
Network entity

 Bidirectional path for audio, video, digital, and other data

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-9

D.10 Waveform

 No. Interface Description

 1 Digital Bitstream output of the IO
Entity/input to INFOSEC Entity

 The Digital Bitstream produced by the Format/ Source Code in the 10 Entity
shall be output to the INFOSEC Entity. Each invocation of the interface shall
transmit one 'frame' of Bitstream data where the frame size is determined by
the Format/ Source Code Algorithm. The throughput of this real-time interface
shall be specified in Kbps (K bits per second).

 2 Digital Bitstream output of INFOSEC/
input to Modem Entity

 The Digital Bitstream produced by the INFOSEC Entity shall be output to the
Modem Entity. Each invocation of the interface shall transmit one 'frame" of
Bitstream data where the frame size is originally determined by the Format/
Source Code Algorithm and the INFOSEC Algorithm. The throughput of this
real-time interface shall be specified in Kbps (K bits per second).

 3 Digital Waveform output of
Modem/input to RF Entity

 The Digital Waveform produced by the Modem Entity shall be output to the
RF Entity. Each invocation of the interface shall transmit one 'baud' of Digital
Waveform data where the baud size is determined by the Presets that specify
IF Bandwidth. The throughput of this real-time interface shall be specified in
Kbps (K bits per second).

 4 Digital Waveform output of
Modem/input to RF Entity

 The Digital Waveform produced by the RF Entity shall be output to the
Modem Entity. Each invocation of the interface shall transmit one 'baud' of
Digital Waveform data where the baud size is determined by the Presets that
specify IF Bandwidth. The throughput of this real-time interface shall be
specified in Kbps (K bits per second).

 5 Digital Bitstream output of the Modem
Entity/ input to the INFOSEC Entity

 The Digital Bitstream produced by the Modem Entity shall be output to the
INFOSEC Entity. Each invocation of the interface shall transmit one 'frame' of
Bitstream data where the frame size is originally determined by the Format/
Source Code Algorithm and the INFOSEC Algorithm. The throughput of this
real-bme interface shall be specified in Kbps (K bits per second).

 6 Digital Bitstream output of the
INFOSEC Entity/ input to the 10 Entity

 The Digital Bitstream produced by the Decryption of the INFOSEC Entity shall
be intput to the 10 Entity. Each invocation of the interface shall transmit one
'Irame" of Bitstream data where the frame size is determined by the Format/
Source Code Algorithm. The throughput of this real-time interface shall be
specified in Kbps (K bits per second).

 7 Digital Bitstream output of the
INFOSEC Entity/ input to the 10
Entity

 The Digital Bitstream produced by the Decryption of the INFOSEC Entity
shall be intput to the 10 Entity. Each invocation of the interface shall
transmit one 'Irame' of Bitstream data where the frame size is determined by
the Format/ Source Code Algorithm. The throughput of this real-time
interface shall be specified in Kbps (K bits per second).

 8 The Waveform Download Control
output of the System Control
Enfity/input to the Waveform Control
Function of the Modem Entity

 The Waveform Download Control signal produced by the System Control
Entity shall be intput to the Waveform Function of the Modem Entity. TBD

 9 The Waveform Instantiate Control
output of the System Control
Entity/input to the Waveform Control
Function of the Modem Entity

 The Waveform Instantiate Control signal produced by the System Control
Entity shall be intput to the Waveform Function of the Modem Entity. TBD

90545-###

Figure D-9. Waveform Interface Description (sheet 1 of 2).

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-10

 No. Interface Description

 10 The Preset Parameter output of the
System Control Entity/ input to the
Waveform Control Function of the
Modem Entity

 The Preset Parameters produced by the System Control Entity shall be intput
to the Waveform Function of the Modem Entity.

 11 The Waveform Execute Control output
of the System Control Entity/input to
the Waveform Control Function of the
Modem Entity

 The Waveform Execute Control signal produced by the System Control
Entity shall be intput to the Waveform Function of the Modem Entity.

90545-###

Figure D-9. Waveform Interface Description (sheet 2 of 2).

D.11 Framework

 No. Interface IDL Description

 (1) Load module fw {

 interface Loader : Initializable {

 OctetSequence Load(

 in FileMan FileManager,

 in string FileName);

 };

 };

 Load retrieves the machine code for the
designated object and its constructor
function from the specified file manager
in appropriate sized segments, and
stores it in local memory.

 (2) Execute module fw {

 interface Loader : Initializable {

 void Execute(

 in OctetSequence Handle,

 in AssocSequence Args);

 };

 };

 Execute starts operation of the
designated object.

 (3) Register module fw {

interface DomainMan {

void Register(

 in string Name,

 in Object Obj);

};

};

 Register receives the object reference
of Processor Objects and other
preloaded objects at a well known
Domain Manager address as new
processors boot up.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-11

 No. Interface IDL Description

 (4) GetObjects module fw {

interface DomainMan {

 struct sObject {

string Name;

Object Obj;

};

•

 typedef sequence<sObject>

 sObjectSequence;

•

 sObjectSequence GetObjects(

 in string Name,

 in string Type);

};

};

 GetObjects retrieves an object list
from the Domain Manager.

 (5) NewFile module fw {

 interface FileMan {

 File NewFile(

 in string Filename);

 };

 };

 NewFile designates the name of a new
file to be accessed, and prepares the
File Manager to read it from persistent
(e.g. disk) storage.

 (6) Read module fw {

 interface File {

 boolean Read(

 out OctetSequence Data,

 in short Length);

 };

 };

 Read returns a data string of up to
Length octets in length from the
current file.

 (7) Close module fw {

 interface File {

 void Close();

 };

 };

 Close terminates processing of the
current file and relinquishes any
assigned resources.

 (8) Load module fw {

 interface Loader : Initializable {

 OctetSequence Load(

 in FileMan FileManager,

 in string FileName);

 };

 };

 If the designated code is already in
memory, Load selects it. If not, Load
retrieves the machine code for the
designated object and its constructor
function from the specified file manager
in appropriate sized segments, and
stores it in local memory. It performs
any necessary relocation and inking.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-12

 No. Interface IDL Description

 (9) Construct module fw {

 interface SelfLoader : Loader {

 Controllable Construct(

 in OctetSequence Handle,

 in AssocSequence State);

 };

 };

 Construct instantiates an instance of
the designated object and loads it with
the designated state information.

 (10) Initialize module fw {

 interface Initializeable :

 Controllable {

 void Initialize();

 };

 };

 Initialize starts the object
maturation process. At this time it can
perform any needed preparation to start
functioning. If the object has hardware
attached, it can also initialize the
hardware.

 (11) Finalize module fw {

 interface Initializeable :

 Controllable {

 void Finalize();

 };

 };

 Finalize is the inverse operation for
Initialize. It instructs the object to
shut down and relinquish any assigned
resources.

 (12) Activate module fw {

 interface Activatable :

 Initializeable {

 void Activate();

 };

 };

 Activate instructs the object to
prepare itself to operate. Actual
execution will occur when a method on
the object is invoked, or, of it is derived
from the Startable class, when its
Start method is invoked.

 (13) Deactivate module fw {

 interface Activatable :

 Initializeable {

 void Deactivate();

 };

 };

 Deactivate is the complementary
operation to Activate. It removes the
object from the Activateble state.

 (14) Start module fw {

 interface Startable : Activatable {

 void Start();

 };

 };

 Start instructs the object to begin
execution.

 (15) Stop module fw {

 interface Startable : Activatable {

 void Stop();

 };

 };

 Stop instructs the object to cease
execution.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-13

 No. Interface IDL Description

 (16) Refresh module fw {

 interface Controllable : Obj {

 boolean Refresh(

 in AssocSequence Assoc);

 };

 };

 Refresh is the primary state
modification mechanism of the
Framework. It uses name-value pairs to
introduce new state (variable values) to
the object.

 (17) Query module fw {

 interface Controllable : Obj {

 void Query(

 inout AssocSequence Assoc);

 };

 };

 Query provides a mechanism to
retrieve the state (values) internal to the
object. It accepts a sequence of
associations, where each association
contains a name and an empty slot to
hold the returned value.

 (18) TFM (Transform) module fw {

 interface Transform : Activatable {

 oneway void TFM(

 in uSequence Data,

 in AssocSequence Control);

 };

 };

 TFM accepts the data to be transformed
as well as control associated with that
data, and, based on the data, the
object’s state, and information in the
control argument, perform some
transformation on the data. Once the
data has been transformed, the “next”
transformation in the chain is performed
by calling TFM with the object reference
of the next transformation in the chain.

90545-258

Figure D-10. Framework Interface Description

D.12 System Fabric

 No. Interface Description

 1 Data • Digital data bus that interconnects entities for data transfers.

 2 Control • Control bus that interconnects entities for control and status information.

 3 Timing • Timing bus that conveys critical timing information to entities.

 4 User Defined • User Defined bus provides unique swignals, such as analog and RF, to interconnect entities.
90545--549

Figure D-11. System Fabric Interface Description.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-D-14

D.13 Input/Output

 No. Interface Description

 External Interfaces
 1 User Interfaces Includes external user interfaces – primarily existing legacy interfaces

 2 Network Interfaces Includes external LAN and WAN interfaces – primarily commercial

 3 External Bus Interfaces Includes external bus interfaces using commercial standards

 Internal Interfaces
 4 Networking Interfaces Includes internal interfaces to Networking for all traffic

 5 Internal Bus Interfaces Includes internal bus interfaces for internal inter-module com
90545-130

Figure D-12. Input/Output Interface Description

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-E-1

Entity Functional Diagrams

E.1 Antenna

Antenna Entity

90545-

A
p
e
r
t
u
r
e

Beam
forming/
steering

Tuning Switching BIT

Reconfiguration

Signals

Digital
Signals

To System Fabric
RF Signals

Digit

Figure E-2. Antenna Functional Block Diagram

E.2 Power Amplifier

Input RF
Management Amplification

Signal
Filtering

Management

Input
Output

Management

EntityContro l
Management

EntityFault
Management

EntityBIT
Management

To System Fabric 90545-322

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-E-2

E.3 Cosite

FilteringFilteringParameter
Control

Parameter
Control

QoS
Inputs
QoS
Inputs

90545-275b

Noise
Shaping
Noise

Shaping
Spatial

Separation
Spatial

Separation
Signal

Handling
Signal

Handling

Control
Request
Control
Request

CancellationCancellation

Figure E-3. Cosite Functional Block Diagram.

E.4 RF

RF RCV BW_Rx Equal Rx AGC Rx Freq_Rx ADC Rx

RF Pwr BW_Tx

Time_Sel

Freq_Tx DAC TxEqual_Tx

90545-219d

RF_CNRL

Figure E-4. RF Entity Block Diagram

E.5 Modem

Carrier
Sync

Symbol
Sync Combine Digital

Out

90545-220c

Baseband
In Despread Equalize Demod DecodeDemux

Combine Digital
In

Baseband
Out Spread Mod Decode

Mod
Recog

MUX

Modem
Control

F.H.
Pattern Gen A.L.E.

Figure E-5. The modem functional entity implements all processes that transform
a baseband signal into information bits, and that transform information

bits into a modulated baseband signal

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-E-3

E.6 INFOSEC

 SEPARATION KERNEL
90545-263b

BLACK BUS Device
Drivers Operating System

Application Framework

Black
Side

Module

CONTRO L BYPASS

Black
Side

Module

Black
Side

Module

FILL CIKZEROIZE

Operating System Device
Drivers

Application Framework

RED BUS

RED
Side

Module

RED
Side

Module

RED
Side

Module

Figure E-6. JTRS INFOSEC Architecture

E.7 Inter-Networking

90545-307b

Multi-
Media
Voice
Data
Video

Net
Mgmt

Name
and

Directory
Service

VMF E-Mail File
XFR

Remote
Terminal

Net
Boot

Protocol

Config
Info

Service

Web
Services

DB DB DB DBDB

Connection - Oriented Connectionles s

Segmentation

Segmentation

Next HOP Rounting

MLS Routing

Bridging

Switching

Media Access Control

Address Resolution

Routing
Protocol
Unitcast
Multicast
QOS
Bridge
Mobile

a b

c

a

b

c

Legacy
Gateway
Data
Voice

a
b

Comm
ercial
Cellular
Data
Video/
Voice

b

a
c

b

cb

Routing
DB

Switching
DB

Infosec/Modem I/O HMI Voice/ Data System Control

Application
Layer

Transport
Layer

Network
Layer

Subnetwo rk
Layer

Note: = DatabaseDB

Legacy
Voice

a a

a
a

a

Figure E-7. Networking Functional Block Diagram

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-E-4

E.8 System Control

RF Modem Black Side
Processes

Other
Entities INFOSEC Internetworking

90545-112

Configuration
Management

Fault
Management

Performance
Management

Security
Management

Virtual
Channel

Management

System ControlManagement

System Control

HMI (Control)

Control/
Status

Control/
Status

Control/
Status

Control/
Status

Control/
Status

Control/Status
Local and
Remote

User control Inputs
System StatusData

Figure E-8. System Control Functional Block Diagram

E.9 Human-Machine Interface

HMI Entity
Control

Waveform I/F
Manager

Network I/F
Manager

Control I/F
Manager

Security I/F
Manager

Data I/F
Manager

Maritime

Airborne

Ground
Local

Remote

HMI

90545-

Control and
Status

Interface
to Control

Voice and
Data

Interface
to Network

Maritime

Figure E-9. Human Machine Interface Functional Block Diagram

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-E-5

E.10 Waveform

FabricFabric

FrameworkFramework

JTRS Entities in Which the Waveform Objects Reside

I/O ModemRF INFOSEC

Data Packets
Initiate Receive

Waveform
Control

Parameterize
 the

Waveform

Execute
the

Waveform

Instantiate the
Waveform

Store
Downloaded

Waveform

System Control

Storage Media

HMI

Operator Interaction
Initiates Transmit

Network

90545-223

Figure E-10. Waveform Software Logical Interfaces.

E.11 Framework

DomainManDomainMan

Register
GetObjec ts
Register
GetObjec ts

90545-279b

LoaderLoader

Load
Execute
Load
Execute

ControllableControllable

Refresh
Query
Refresh
Query

FileManFileMan

NewFileNewFile

Self LoaderSelf Loader

ConstructConstruct
Cross LoaderCross Loader InitializableInitializable

Initialize
Finalize
Initialize
Finalize

FileFile

Read
Close
Read
Close

ProcessorProcessor ActivatableActivatable

Activate
Deactivate
Activate
Deactivate

TransformTransform

TFMTFM
StartableStartable

Start
Stop
Start
Stop

ObjObj

Figure E-11. Framework Class Hierarchy

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-E-6

E.12 System Fabric

90545-314

System Fabric (Red & Black)

Framework
Control

Waveforms

M
od

em

IN
FO

SE
C

In
te

r N
et

w
or

ki
ng

C
os

ite

Po
w

er
 A

m
pl

ifi
er

A
nt

en
na

R
F

H
C

I

I/O

• Transfer Digital Waveform Data
• Transfer Control / Status Messages
• Transfer Time Critical Information
• Transfer Unique Analog / RF Signals

Figure E-12. JTRS System Fabric Context and Functional Definition

E.13 Input/Output

Analog Video

Analog
Modem/Voice

Digital Voice/
Data

Digit al Video

LAN/WAN
Voice/Data/

Video

90545-129d

I/O
Entity

Commercial
Interface Bus

Adapter

Network
Entity

Commercial
Internal

Interfaces

External BUS

Coax/Fiber

Wire/Legacy Adapter

NTSC

V.90

Wire/Legacy Adapter RS/MIL STD

Coax/Fiber H.323

External LAN/WAN Interface
Install Kits and Standards (e.g)

Wire/Coax/Fiber/Legacy Adapter
Ethernet, FDDI, Sonet, Mil-Std-1553

Wire/Coax/Fiber SCSI

CORBA
Wrapper

External User Interface
Install Kits and Standards (e.g.)

Figure E-1. I/O Functional Block Diagram

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-1

Development Environment

F.1 Development Environment

F.1.1 Introduction

The JTRS development environment embodies a mix of selected commercial standards and
JTRS defined APIs to allow industry to develop JTR components using their own internal
processes and tools.

The JTRS application development process encompasses the development of both hardware
and software components of the Joint Tactical Ratios (JTR). This process (and the JTRS
architecture) is designed to balance the use of standards (both commercial and JTRS unique) and
developed software components to allow for the maximal use of currently existing industry
expertise and capability while providing for compatibility and interoperability at both the
software and hardware levels.
F.1.1.1 Software Development Environment

The JTRS software development environment permits industry to select from multiple vendor
sources to maximize development efficiency while conforming to the JTRS architectural
framework.

In the context of the JTR being a software radio, several items should be established up front:
• Software is defined as ANY logic which is expressed as a set of statements which can be

compiled, loaded and executed on a computational host. Per this definition, software includes

• both real-time code and non real-time code

• embedded and non-embedded code

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-2

Table F-4. High Speed Bus Survey

1553/1773 IEEE1394 Fibre Channel ATM FDDI
Gigabit

Ethernet
Description Standard Firewire Layered

protocol
Async trans
mode

Fiber
Distributed

Standard
upgrade

Layered
protocol

Fabric
switching

Data Interface Layered
protocol

Topologies
Point to point yes yes; tree yes no no yes
Looped hub no no yes no yes, dual ring yes
Switched no no yes yes no yes?
Performance
Nodes 30 63+ 16+ 16+ 16 16+
Bandwidth (mbits/sec) 1 100 to 400 100 to 1.06g 155 to 622 100 1.25 Gbps
Word Size 16bits&3sync,1

parity
8bits/10bits n/a n/a n/a

Frame Size (bytes) 2 to 66 192-404/packet 36-2k 53 22-4.5k 64-1.5k
Protocols supported 1553 Firewire,audio,

video
Network,SCSI,
video

Network, video Network

Latency (usec) 60 low 30 300 36 150?
Power low low-med; in

cable
med high med high

Cable Length between repeaters
(meters)

30 4.5 30,300,10k 100 100 25,550,52k

Required hardware 1BC,RTs,xcvr,
coupler

Links, Adapter Links, Adps,
Switchs,Hubs

Adps,Switchs Router,Conctr,
NICs

NICs,Reptrs,
Switchs

Plug and Play no yes yes, windows
NT5

yes yes yes

Maturity
Industry use/Military Use Excellent/

Excellent
Good/Good Good/Good Yes/No Air Force Good/?

Projected Lifecycle Twilight Good Good Good Poor Good
Legacy Excellent Fair Fair Fair Fair Good
Packaging
Size (sq in) (Approx) small small 12 20 12 ?
Connectors/Cabling Triax small, STP Twinax,Fiber STP Twinax,Fiber UTP, Duplex

Fiber
Thermal Excellent Fair Good fair Good Fair
Military Environment Excellent Fair Good Fair Fair Fair

Reliability
Redundancy Yes No Yes,some Yes,some Yes Yes,some
Error Detection (EDAC, Parity) Parity CRC-error

check
CRC-error
check

CRC; HEC CRC-error
check

CRC-error
check

Hot Swappable No yes yes? ? ? yes
Software Support
Tools Yes Yes yes yes yes yes
Relative Cost Low low med High? High? Med?

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-F-3

Table F-5. Parallel Bus Survey

VME64x PCI CompactPCI SPCI PC/104-Plus VXI Card Bus PMC RACEway++ Myrinet PCI-X
Description Std

Backplane
Std PC
Backplane

PCI with 6U
form

Small PCI Enhanced
PCI

VME
Derivative

sub-bus Sub-bus Sub-bus Sub-Net bus Switched
Fabric IO

1 Mast; IO
Processing

Complement
Bus

Stacked Test Equip PCMCIA Mezzanine Crossbar
Switch

Full Duplex

Includes ISA
bus

interface bus 2 mods/
board

real time
multi-p sup

Network

Topologies
Modularity (Functional
Building blocks)

Good Good Good Good Good Good Yes Yes Yes Yes Yes

Flexibility (Range of
functions)

Good Good Good Fair Fair Fair Yes Yes Yes Yes Yes

Scalability (Expand
various functions)

Good Good Good Fair Good Good Yes Yes Yes Yes Yes

Add-on method N/A N/A N/A N/A N/A N/A Bridge/Adapt
er

Adapter Interlink Mod Lanai
controller

N/A

Performance
Slots 21 4 8 4 Stack of 4 13 2 sockets 4 modules 8 ports 16+ 4?
Masters All All 5 All All All 1 All 4 simul 8+ simul 1
Arbitration Scheme Priority System

Controller
System
Controller

System
Controller

System
Controller

Resource
Mgr

N/A System
Controller

Adaptive
Routing

Switched
Fabric

System
Controller

Sync/Async Async Sync Sync Sync Sync Async Sync Sync Sync Async Sync
Bus Width 32A, 32/64D 32A/D,64D 32A/D,64D 32A/D 32A/D 32A, 32D 32A/D 32A/D 32D 8D, in

packets
32A/D,64D

Signals (Data, Addr,
Ctrl)

78+ 47 47 47 ~135 78++ 47 47 40 10 47

Clock n/a 33;66mhz 33;66mhz 66mhz 33mhz n/a 33mhz 33mhz 66mhz N/A 100-133mhz
Bandwidth (Max)
mbytes/sec

80 528 264 132 132 100 132 132 264/port (4
ports)

160/port 528

Latency low very low very low very low very low moderate low very low lowest low very low
Interrupts 7 4 4 4 14 7 1 4 N/A N/A 4
Multiprocessing Yes, good Yes, limited Yes, limited Yes, limited Yes, limited Yes N/A Yes, limited Yes, excel Yes, excel Yes, limited
Plug and Play/Auto-
configurable

No/Minimal Yes Yes Yes Yes Yes Yes Yes ? ? Yes

Power Usage high Medium Medium low low high low low low low ?

M
SR

C
-5000SR

D
A

ppendix C

O
riginally Published 7 M

ay 1999
C

-F-4

Table F-5. Parallel Bus Survey

VME64x PCI CompactPCI SPCI PC/104-Plus VXI Card Bus PMC RACEway++ Myrinet PCI-X
Maturity
Industry use/Military
Use

High/Good High/? High/Good Fair/? Fair/? High/Good Fair/? Fair/Fair Fair/Avail New/ New/?

Projected Lifecycle Good Good Good ? Good Good Good Good Good ? ?
Legacy Good Good Good PCI based Good Good PCI based PCI based VME/PCI VME/PCI Good
Product Types SBCs,Mem,

IO,etc
SBCs,Mem,
IO

SBCs,Mem,
IO

SBC,Mem,IO SBCs,Mem,
IO

TE
Instruments

Mem,IO,
Tuner

SBC,Mem,IO Proc,Mem,IO SBC,LAN,
SAN

?

Packaging
Box/Board Size 6U, 3U PC 6U, 3U Credit Card PC/104 A,B,C,D Credit Card CMC 16 slot width 6U switch

card
?

physical form factor
(mm)

160x233;
160x100

337x122 160x233;
160x100

86x54 90x96 160x233-
330x355

86x54 74x149 323x95,
varies

160x233 ?

Connector Size P1:2 160p
P0 95p

184p J1,3 175p
J2,4 154p

108p J1,2 104 J3
120p

P1:3 96p 68p P1:2 64p VME J2 40p ?

Connector Type pin in socket 2 sided edge pin in socket header pin in socket pin in socket pin in socket Molex ww pin in
socket

Cable ?

Heat Dissipation Air or Cond
cooled

Air Air or Cond ? ? Air ? Air or Cond ? ? ?

Military Environment Available Poor Available ? Good Good in
racks

? Available ? ? Not yet

Reliability
Redundancy No No No No No No No No No No No
Error Detection (EDAC,
Parity)

No Parity Parity Parity Parity No Parity Parity No No Parity

Hot Swappable no No yes, coming no no no yes No N/A N/A ?
Software Support Good Best Best Best Good Fair, test Good Good Available,? Available, ? Best
Relative Cost Med/High Medium/Low Med/High ? Medium Med/High low low med? low/node

($1600)
?

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-5

• code running on any processor whether that be a general purpose processor or a DSP.
In some cases, this definition could even be extended to HDL used to generate logic on an FPGA.

• All software development should be as common as possible in the front-end software tasks
(requirements, design) in order maximize the use of common algorithms across as many domains
as possible. This should include a common software process to provide common software
products.

• Software development tasks, both front-end (requirements, design) and back end (compile, link,
test, integrate) should be performed on an integrated tool suite, to allow for maximal efficiency in
code generation and test.

To support these statements, and to provide an integrated development environment, the JTRS
software development process is segmented into two development environments working jointly
- the Run-time environment and the Application development environment. A shared
characteristic in both is the use of COTS components, and the balance which must be struck
between the desire for plug an play components and for open/industry wide acceptance. The
trade between these two extremes is shown in Figure F-1.

Fixed SW Components
Compiler/Linker/IDE
RTOS, CASE, CM

Services

Vendor Independent
Components

Compiler/Linker/IDE
RTOS, CASE, CM

Services

Plug and play requires development

Compliance enforced by standards/APIs

Increasing tool/platform availability

Ease of plug and play components

Compliance enforced by tool suite

Limited tools, platforms availability

Select tool suite which
provides for both ease of industry
development and standardization

Software Environment Continuum

Figure F-1. Vendor Specific-Open Standard Trade Space

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-6

At one end of this software development environment spectrum is the desire for
interoperability, which increases the “plug and play” quality of the software components while
decreasing the options for multi-vendor development tools. On the other end is the desire for
multi-vendor support, which requires the development of standards/APIs and the acceptance of
those standards by the software component vendors or implementation of the APIs on multiple
platforms in order to assure some plug and play capability. The JTRS approach is to take a
middle road, in an attempt to achieve a set of plug and play software components, while allowing
for multiple software component vendors/tool suites. The decisions made are shown in Figure
F-2.

Fixed Components
Language = C++,

HTML

Vendor Independent
Components

Compiler/Linker/IDE
RTOS, CASE, CM

Services

Recommendation
GCC

Boeing Consortium Software Development Environment

Standards
POSIX

2 JTRS APIs

Software Environment Continuum

Figure F-2. Summary Trade Results

F.1.1.1.1 Software Development Process

A wide range of JTRS software components will be implemented both at initial fielding and at
subsequent future deployments. Keeping the software architecture “open” to allow for these
unplanned future software upgrades is an essential element of the JTRS concept. To support this
function, software applications developed for JTRS must maintain a minimum level of
documentation through a defined process. This helps ensure interoperability between subsystem
components, and enables upgrades in the future. A notional software development flow and
minimal documentation is shown in Figure F-3. This flow provides a starting point from which a
more formalized baseline can be developed in Step 2. Additionally, standards such as Mil-Std-
498 will most likely be required on individual contracts when the Government is funding the
software development. The use of Mil-Std software should be encouraged, but not be mandated
for JTRS in order to remain flexible with COTS packages developed under vendors R&D
budgets.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-7

JTRS
SW Architecture
and Standards

New Requirements Planning Requirements
Analysis Design Code and

Unit Test
Integration

Test
Functional

Test

Software
Development

Plan

Software
Requirements
Specification

Software
Design

Specification

Interface
Design

Specification

Version
Description
Document

Source
Code

Software
Test Plan

COTS
Evaluations

JTR Architecture
Definition

Figure F-3. Notional JTRS Software Development Process

The Notional Software Development Process
The notional process shown in Figure F-3 starts with inputs on the left, indicated by the

ellipses, and proceeds to the right-hand side from Planning phase through the Functional Test
phase. The outputs or deliverables, corresponding to each phase, are shown below each phase.
This process outlines a traditional approach to software development using the JTRS Software
Architecture.

The JTRS Software Architecture and Standards is a key input into the software
development process. Several key architecture features help modularize the components,
enhance interoperability and maximize the use of commercial technologies:

• JTRS Foundation classes provide structured yet flexible interfaces at the appropriate boundaries
resulting in: (1) flexibility in hardware packaging; (2) the replacement of hardware with
software; and (3) forward and backward compatibility.

• A set of Real Time Extension and Core Services APIs to isolate lower layer software functions
from more abstract upper level functions to promote software reuse and introduction of COTS
into the lower layers.

• A set of software component standards such as (a) JTRS Software Design Standards, (b) JTRS
Software Implementation Standards (c) JTRS Software Process Guidelines and (d) JTRS Run-
Time Development Environment Guidelines which provide guidance for software development.

• A set of JTRS selected commercial standards (POSIX, HTML, etc), design methodologies
(Object Oriented), recommended tools and languages (C++) maximize the use of commercial
technology and provide a stable baseline on which to build.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-8

New Radio Requirements are the second inputs into the software development process. The
source of the new requirement would typically be the Government through standard procurement
cycle. These requirements may also flow down from systems requirements or vendors who
produce products using R&D funds. The source may levy development processes and process
tailoring as part of the procurement. The requirements will range from the system level to the
module level such as a specification for a new radio waveform or protocol.

The JTR Architecture Definition is the third input into the software development process.
This will typically include items such as the functional requirements for the units being
developed mapped down to hardware/software components, the hardware/software partitioning,
the hardware platform definition those components which host software and the physical
architecture definition for the units being developed.

The software development team takes the JTRS Software Architecture, New Requirements,
and the JTR Architecture Definition and begins the development process by creating a
Software Development Plan (SDP) in the Planning stage. This plan is a high level view of the
development and includes a baseline schedule, work breakdown structure, list of coding
standards, list of tools and the risk areas and mitigation strategies. This plan must be iterated as
the development proceeds and more details become available. The plan may also be produced in
parallel with the Requirements Analysis in order to solidify the design constraints and
complexity.

The primary focus of the Requirements Analysis phase is to produce the Software
Requirements Specification (SRS). This requires the developers to specify all functional,
performance and interface system requirements in a precise manner that enables verification of
the requirement. During this phase, the developers map the user requirements into the JTRS
Software Architecture to establish the SRS. An optional goal is for all JTRS developers to model
their software using an object oriented analysis methodology that will provide a standard
reference for all JTRS software developers.

The SRS and JTRS Software Architecture are then used as a basis for the Design phase. One
or more design specifications will be developed during this phase based on the design
complexity. Some designs may be easily created using a single design specification that
incorporates both the software and interface designs. Other designs may require more rigorous
documentation and additional specifications. The exact implementation should be left to the
developer. The design specification should include architectural drawings, software interfaces,
hardware interfaces, module definitions and trade off analysis. An optional goal is for all JTRS
developers to model their software using an object oriented design methodology that will provide
a standard reference for all JTRS software developers. Also during this phase, COTS software
evaluations occur to evaluate any existing COTS products for inclusion into a JTRS. These
COTS software components must be evaluated to ensure that they comply with the JTRS Run
Time Standards. A Software Test Plan (STP) should also be developed to outline the types of
tests to be performed throughout the development cycle. The STP should outline the Unit,
Integration, and Final tests which help verify design and catch potential problems early in the
design cycle.

The next three phases commence the build of the software. This build starts with Coding and
Unit Test at the module level to ensure the interfaces operate as required by the design and JTRS
Software Architecture. Tests are conducted to validate method calls to lower layers to help

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-9

ensure system boundaries are adequately handled. The code may also be inspected and built by
an independent party to ensure compliance to the JTRS Software Architecture, the coding
standards and the Design Specification. Following successful unit testing of all components,
Integration and Test is performed between modules and sub-systems by the developers.
Multiple coding and integration phases may be used with each build phase getting closer to the
final end product. Using multiple phases helps catch problems early by forcing developers to
work together from the start. The number of build cycles should be outlined in both the STP and
the SDP. Once all modules have been integrated and all build cycles are complete, a full end to
end Functional Test is conducted. The Functional test should be designed to validate the SRS
requirements. After successful completion of the functional test, Source Code and Version
Description Documents (VDD) are delivered to the JTRS Software Support Environment. The
VDD provides basic information about the software capabilities, any known limitations, a build
procedure, and an installation procedure. This information may be split between various
documents in the case of a complex software package.

At the completion of the software development process, the software products (including
source code, object code and documentation as applicable) are provided to the JTRS Support
System for validation, certification and distribution.

This notional software development process (or developer equivalent) is used to develop two
basic types of the software for inclusion in a JTRS compliant radio. These are called the Run-
time and the Application software components. Both of these components will contain some
JTRS development effort, as well as selection and integration of software components.
F.1.1.1.2 Run-time Development Environment

The development of the JTRS run time environment is intrinsically connected with the
hardware module, to allow for maximal portability of the application software.

The Run-time software, as shown in Figure F-4, is based on the physical hardware
implementation of the JTR being developed. In particular, this software is dependent on the
definition of the host hardware platform (processor, etc) and the JTR physical architecture that
are products from the JTR Architecture Definition process. This development includes the
selection of the Real-time Operating System (RTOS) and the implementation of the JTRS unique
APIs which support the Real Time and Core Services functions which are common to all JTRS
Run Time environments.
F.1.1.1.2.1 Operating Systems

The selection of the Real Time operating systems is based on three basic factors – the host
processor being used, the JTRS standards that are used to enforce compatibility, and the
compatibility with the development system. The host processor may range anywhere from a
general-purpose processor to a digital signal processor. The RTOS must be selected which
supports the selected hardware architecture. In addition, the RTOS must support the JTRS
standards for compliance with the JTRS architectures, for example:

• Must be POSIX compliant

• Must be ROMable

• Must support dynamic loading of re-locatable objects

• Must support file system on both hard-disk and non-volatile memory.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-10

Hardware Abstraction Layer/Drivers

POSIX Compatible
Kernel

Core
Services

- Boot
- Dynamic

Object
Load

Real-Time Extension Libraries

JTRS Real-Time Extension API

Operating System Services
- Protocol Stacks
- Windowing Mgr

JTRS Waveform/Protocol
Application JTRS Core

Services
API

Re-locatable
Object

Modules

COTS

JTRS
Application

JTRS
API

JTRS Application

JTRS Run-time

Figure F-4. JTRS Run-time and Application Environments

Other unique domain specific requirements must also be considered, such as Multi-Level
Security and real-time characteristics (task/process swap speed, etc).

Selection of the RTOS must also take into consideration the software development
environment that is being used to develop the JTR software. Software Integrated Development
Environments (IDEs) typically require interaction between the RTOS and the software
development platform via some physical communication media to support host/target
downloading, debugging and testing. This communication and interaction must be considered in
both the physical architecture and the RTOS selection.

After the RTOS is selected, extensions to the RTOS must be developed to complete the
required compatibility with JTRS applications.
F.1.1.1.2.2 Extensions to Real Time OS

There are two basic types of extensions to the RTOS that are constructed as APIs between the
run time environment and the application environment.

1. JTRS Real-Time Extensions – This API extends the RTOS capabilities to support real-
time signal processing capabilities required for signal processing within the specified
domain. This optional API provides a fixed set of signal processing services to the
application, by mapping those services to RTOS and/or processor capabilities. If those
capabilities are not available as standard items in the RTOS or processor, a set of
standard “C” libraries is supplied in source code to implement those functions in a non-
platform specific manner.

2. JTRS Core Services APIs – This API provides a standard interface for the JTRS
application to use RTOS boot and object load functions. Each RTOS typically has a

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-11

unique method for its object load functionality. This API maps the standard interface to
those unique RTOS services.

An example set of APIs (developed in “C”) is provided from the JTRS Support Environment to
assist in the development of this software. However, it is up to the software developer of the run
time environment to develop these APIs which are supported on the selected processor and
RTOS, and provide them for the application layer software components.
F.1.1.1.3 Application Development Environment

The development of the JTRS applications is based on the JTRS Foundation Classes defined as
part of the architecture which allows for flexibility and creativity of software implementation
within a structure which supports the portability and interoperability required within the JTRS
system.

The JTRS application software can be seen as being developed in three phases:
• Platform Independent JTR Software Development

• Platform Independent JTR Software Modification

• Platform Dependent JTR Software Implementation

Each of these phases requires some input from both the JTRS Support Environment and the
JTR architecture definition phase.

The Platform Independent JTR Software Development process is shown in Figure F-5. It
includes implementing new and/or existing waveform/protocol software into the JTRS
architecture structure as expressed in the JTRS Foundation Classes. It is tested using a “generic”
target processor, to confirm JTRS compliance, and then provided as source code and
documentation to the JTRS Support Services repository. The products of this phase are target
independent, that is, they have not been tested on the domain specific host platform which will
eventually host these software algorithms.

Design,
Implementation

& Test

JTRS Software
Standards

JTRS Foundation Classes
Reference Model

APIs

Software
Algorithms

Source Code,
Module Design,

Module
Characteristics

Generic JTRS
Compliant Target

Software
Tool Suite

Figure F-5. Software Development of Platform Independent JTR Software

The Platform Independent JTR Software Modification process is shown in Figure F-6. It
includes the modification of reference software that exists in the JTRS Support Services

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-12

repository. Modification/enhancement of this software would be as the result of detection of a
software error, or as an enhancement to the algorithm perhaps directed via an ECP. Again, it is
tested using a “generic” target processor, to confirm JTRS compliance, and then provided as
source code and documentation to the JTRS Support Services repository.

Design,
Implementation

& Test

JTRS Software
Standards

Source Code
Module Design

Module Characteristics
Target Specific

APIs

Revised
Software
Algorithms

Revised Source Code,
Revised Module Design,

Revised Module
Characteristics

Generic JTRS
Compliant Target

Software
Tool Suite

Figure F-6. Software Modification of Platform Independent JTR Software

The Platform Dependent JTR Software Implementation process is shown in Figure F-7. This
process includes the porting of the software independent source code to the specific target
domain that will host these algorithms. The output of this process will include re-locatable
object modules that are mapped to the specific domain in which they have been ported and
tested.

It is also during this process that the integration of the run time environment and the
application software occurs, providing an integrated and tested set of software to the JTRS
Support Services for validation, certification and distribution.
F.1.1.2 Hardware Development Environment

The JTR hardware development is based on selected commercial standards, which allows for
maximal industry involvement in the development of JTR hardware components.

It is the not the intent of the JTRS to mandate how hardware is developed. Rather, the intent is
to provide selected commercial standards that can result in plug and play hardware components.
Per this intent, the JTRS will provide a selected set of standards for each domain which specify
the form factor and the interfaces to be used. In addition, the JTRS will provide a set of
encapsulation guidelines for specific domains to assist in the physical partitioning of the
hardware/software components during the JTR/module definition phase.

MSRC-5000SRD
Appendix C

Originally Published 7 May 1999 C-F-13

JTR
 Architecture

Definition

Design,
Implementation

& Test

Sw Development
 System Tool

 Selection

Hardware/Software Partition and mapping

JTRS Run-Time
Standards

JTRS Software
Standards

Target Specific
Real-Time Extensions

APIs
Reference Source Code

Reference Module Design
Reference Module Characteristics

 Target Hardware Selection

 Target Software Tool Suite

Source Code,
Module Design,

Module
Characteristics

HDL Code

Re-locatable
Object

Modules

Real Time
Extensions

Figure F-7. Platform Dependent JTR Software Implementation

The development of signal processing elements into strictly hardware components in order to
meet throughput, processing or domain requirements are also supported by the use of the
reference models which exist in the Support Environment repository. These reference models,
which provide the signal processing algorithms in C/C++, can be translated into standard HDL,
which can then be input into the appropriate tool suite/HDL compiler which will generate
hardware logic definitions for the hardware being implemented. This HDL can then be used as a
baseline for the FPGA (or equivalent) design.

At completion of hardware development, strictly hardware components are verified to be JTRS
compliant by assuring that they meet all applicable standards. This compliance must include any
hardware drivers that need to exist in the software domain to communicate with the hardware via
a JTRS compliant bus interface.

For hardware components that act as host platforms for software, these modules must be
integrated with their respective run-time environment, and be verified to be run-time compliant
with the JTRS software architecture. This verification is done as part of the JTRS Support
Environment function, and is described in that section.

